Exascale Programming: Adapting What We Have Can (and Must) Work

By Michael A. Heroux, Sandia National Laboratories

January 14, 2016

The demands of massive concurrency and increased resilience required for effective exascale computing have led to claims that our existing approach to application programming must be replaced. In this article I argue that disruption is inevitable but will not require new languages or programming environments. Instead disruption will be in application design, introducing new control layers that will provide the concurrency, adaptability and resilience features we need in order to achieve effective exascale performance levels.

Before starting a discussion of parallel programming futures, we should state some concepts that are often vaguely or multiply defined. First, a model is an abstract system for reasoning about design and implementation, so programming models help us reason about programming, execution models help us reason about how a program will run, particularly when thinking about parallel execution. Programming and execution environments are concrete toolsets we use to implement and run a program. Finally, a computer language and its companion libraries (Fortran, C++, MPI, etc.) can be used to encode many programming models and can be compiled to run on many execution environments.

In this article I argue that programming and execution environments are changing to meet the future needs of exascale systems. Libraries (especially MPI) and OpenMP features are evolving to provide credible exascale programming environments for C++, C and Fortran, that are also portable and sustainable. In addition, C++ is evolving to make embedded domain specific language (EDSL) enhancements convenient to develop and use. EDSLs provide programming model and environment extensions to support parallel programming while still being portable, since the extensions are written in standard C++ syntax. EDSLs can also be targeted for further optimizations by the execution environment. EDSLs provide the most credible path to language support for new parallel programming models, syntax and execution.

Adapting What We Have Can (and Must) Work
C++ (with C as an important subset, and with OpenMP extensions) has become an essential element of scientific computing. C++ provides suitable abstractions and extensibility for defining EDSLs, while at the same time permitting explicit data references for efficient execution and interoperability with Fortran. It also has large user communities and an active standards committee whose interests align with high performance scientific computing. New features in the 2011, 2014 and 2017 standards position C++ to be even more effective for parallel computing and for extending EDSL capabilities. With the 2020 standard, C++ should contain features for the most common types of on-node parallelism including hierarchical and task-graph. Furthermore, the emergence of the modular, open compilation tools LLVM and Clang give research and vendor communities a rich platform for new R&D in production-quality compiler environments, enabling development of future language features, pluggable tools and custom optimization passes.

OpenMP is evolving to address tasking requirements, complemented by the OpenACC fork (whose capabilities are being integrated into OpenMP) to address accelerators. OpenMP has a committed two-year release cycle, with approved features published in alternate years. Simple sprinkling of OpenMP/OpenACC directives into an existing code has given these tools a bad reputation, but for fundamentally refactored applications, performance can be very good. OpenMP also promises better sustainability, especially compared to explicit pthread, CUDA or OpenCL programming approaches, which require retuning with each new generation of hardware.

ExascaleEditionThumbMPI is evolving as well and has always been more a portability layer than a programming API. For well-designed applications, explicit MPI calls are encapsulated in abstraction layers, e.g., exchangeGhostValues(), which most application developers call instead of MPI functions. Inclusion of asynchronous global and neighborhood collectives enables implementation of latency hiding algorithms, and MPI shared memory features enable use of shared memory between ranks, and thread-like shared memory programming.

Fortran is essential for exascale programming. The explicit policy of non-overlapping arrays (enabling compilers to more easily vectorize and parallelize automatically), simple loop syntax, longstanding support for robust real and complex arithmetic, along with the vast quantity of encoded scientific knowledge mean Fortran will remain the primary development language for many domain scientists who write software. Even as clean-slate Fortran development efforts decline, the value of the legacy Fortran software base and its ongoing refactoring and extension will be essential for decades to come.

Execution environments must undergo more substantial changes than programming languages and environments. Current runtime systems are very good at concurrent execution, but are not designed for lightweight threading (except GPUs) or locality-aware task mapping. Thread-scalable computing will require better, more transparent on-node thread parallel environments. Fortunately, we see much progress lately, underneath existing programming languages and environments.

Adding Tasking is Critical
Although programming and execution environments are evolving smoothly toward exascale capabilities, we do have disruptive changes ahead. Most scalable parallel applications today have simple data and work decompositions: Each MPI rank owns a static portion of large data objects, e.g., a subdomain of a large distributed global domain, and each rank executes its code sequentially (potentially vectorizing), or with modest thread-parallel capabilities. This approach works on existing NUMA multicore systems by assigning multiple MPI ranks to a node and using OpenMP across a handful of cores, but performance using this approach is not sustainable as core counts continue to increase.

Tasking, with work granularities sufficiently large to make effective use of one or a few cores, must be added to most applications in order to sustain performance improvement as concurrency demands increase. Specifically, tasking requires one or more levels of additional decomposition (at least logically) of data objects, e.g., create multiple patches or tiles from each MPI subdomain, and assign tasks to execute concurrently on these patches. Within a single shared memory node, tasks can in principle cooperate closely, executing dataflow patterns, sharing data and otherwise collaborating in lightweight parallel computation.

A tasking layer in an application enables portability across GPU (where the GPU gets a big patch and handles its task concurrency itself), multicore and manycore devices; and works with heterogeneous device combinations if task-executed code is written using OpenMP/OpenACC or uses compile-time abstraction layers such as the Kokkos library to compile to each specific device type. This tasking layer can also be implemented using a second layer of message passing. Furthermore, a tasking layer permits exploitation of new resources of parallelism. Fine grain functional parallelism, and pipeline, wavefront, and parallel-prefix execution patterns are feasible because of shared memory and lightweight control transfer. These new parallelism resources are essential as we exhaust traditional sources such as SPMD data parallelism and ensembles. It is worth noting that tasking designs within application codes do not impose use of particular parallel programming languages or environments and can in principle permit combinations of several approaches in a single executable program.

Tasking also supports new models and strategies for high bandwidth memory, resilience and load balance. Task work and data can be scoped to fit into a particular memory space. Also, since parent tasks have all necessary state to re-spawn child tasks, they can establish pre and post conditions on state data for child tasks, and timeout conditions, or simply re-spawn and re-queue for better execution flow. These attributes can protect against many failure sources, including reducing silent data corruption failures, and can improve execution time. All of the innovation required to support this kind of programming is already underway in the C++ language, programming and execution environments. No replacement is required.

The final important aspect of a tasking layer is that task-executed code is encapsulated within the tasking framework and itself has only modest parallel execution requirements: It should vectorize if possible to be able to execute efficiently on a small number of shared-cache cores. As a result, task-executed code can be written in any common HPC language, including Fortran, thus preserving our Fortran code base. In most instances, the task management layer is most effectively written in C++, but a well-designed application can insulate domain scientists from the details of task management and permit them to write new functionality at the task level in much the same way as they write code for MPI-based applications today. The only major added concern is how to encode inter-task dependencies. I think training programmers about futures concepts, which can be used to encapsulate control transfer logic, is perhaps the best way to portably provide this encoding.

The Reality of Starting Anew
With the explicit challenge of reaching multi-billion-way concurrency in order to reach exascale performance levels and beyond, many people have argued that we need a clean break from incrementally improving on our existing approaches to parallel programming, and such arguments have spurred development and exploration of new parallel programming languages. While such efforts are certainly interesting research, there is no evidence that the HPC community can bring a new language to market in a portable, sustainable way. The lack of traction gained by Chapel, X-10 and Fortress, the HPCS languages introduced more than a decade ago are one indication, but for an even more telling example, we simply have to look at the current state of Fortran to reach this conclusion.

trilinosWhile Fortran remains an important language for scientific computing, and new lines of Fortran code are still being written, the adoption of new Fortran features is very slow. In 2009 and 2010, the C++ based Trilinos project developed Fortran interface capabilities, called ForTrilinos. As an object-oriented (OO) collection of libraries, we assumed that the OO features of Fortran 2003 would provide us with natural mappings of Trilinos classes into Fortran equivalents. Over the two-year span of the ForTrilinos effort, we discovered that compiler support for 2003 features was very immature. ForTrilinos developers quickly came to know the handful of compiler developers who worked on these features and, despite close collaboration with them to complete and stabilize the implementation of Fortran 2003 features (in 2010), ForTrilinos stalled and is no longer developed.

The Fortran 2008 standard has similar issues. Co-arrays, an elegant approach for supporting SPMD parallel programming, first developed in the early 1990s, is part of the 2008 standard, but any application developer interested in portability cannot use them. In contrast, the C++ standards community is committed to producing a revised standard every three years, and features for the coming standard often appear in vendor compilers before or simultaneously with ratification of the standard.

Yes, Fortran is an important programming language for scientific computing, and it is a language our community owns, but the reality is that the use of new standard Fortran features is very restricted, if portability is paramount. Furthermore, it is the feature set of Fortran 95 that is most valuable to scientific computing. The recent announcement of a revitalized effort to produce a Fortran equivalent to Clang is exciting, especially if the resulting Fortran 95 features are solid and compiled code vectorizes well. However, the anemic adoption of new Fortran standards should serve as strong evidence that any prospects of a new scientific computing language are very slim. Also, the likelihood that the broader computing community will cooperate with us in establishing a new language is low. C++ is the broader community’s answer for high-performance concurrency.

My pessimism about new languages does not mean novelty is impossible. It means that novelty must be introduced as modest extensions to existing capabilities. CUDA took this route and other task-based embedded C++ DSLs show promise.

Summary
The exascale performance milestone is approaching, but reaching it requires disruptive changes at all levels of the computing ecosystem, driven by needs for massive concurrency. Scientific application design will require disruptive changes in software architecture, in the form of tasking, in order to address increasing hierarchies, take advantage of memory hierarchies, the commodity performance curves of thread-state count and vectorization, and address resilience. However, the practical realities of our production environments make the possibilities for brand-new software eco-systems extremely unlikely. We only have to look at the reality of our Fortran environments to see this.

Fortunately, our existing languages and environments are adapting to support the programming and execution models necessary for exascale performance. The disruption on the path to exascale is being contained to adapting our existing languages and environments, not replacing them.

Author Bio
Michael A. Heroux is a Distinguished Member of the Technical Staff at Sandia National Laboratories, working on new algorithm development, and robust parallel implementation of solver components for problems of interest to Sandia and the broader scientific and engineering community. He leads development of the Trilinos Project, an effort to provide state of the art solution methods in a state of the art software framework. Trilinos is an award-winning product, freely available as Open Source and actively developed by dozens of researchers. Dr. Heroux is also the lead developer and architect of the HPCG benchmark, intended as an alternative ranking for the TOP 500 computer systems. For more: http://www.sandia.gov/~maherou/biography.html

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This