Argonne Paves the Way for Future Systems

By Tiffany Trader

January 14, 2016

Last April, the third and final piece of the CORAL acquisition program clicked into place when the U.S. Department of Energy signed a $200 million supercomputing contract with Intel to supply Argonne National Laboratory with two next-generation Cray supercomputers: an 8.5-petaflop “Theta” system based on Knights Landing (KNL) and a much larger 180-petaflop “Aurora” supercomputer.

The staff at the Argonne Leadership Computing Facility (ALCF), where the machines will be deployed, is looking ahead to the future of these systems and the evolution of computing at the facility. To find out more about their preparations and plans, HPCwire spoke with the project director, ALCF Deputy Division Director Susan Coghlan. Just as she facilitated the deployment of Mira in 2012, Coghlan will oversee the installation of Theta in the second half of 2016 and Aurora in 2018.

Argonne-system-comparison-2016

While details of these machines’ feeds and speeds remain unchanged since the debut announcement last April, their slated arrival has kicked off a slurry of activity at Argonne, including the ramping up of the Early Science Program (ESP) projects that ALCF announced in August. The Theta ESP involves 12 projects in all, split into tier one and tier two camps, which you can read more about here. They were selected to represent a wide range of scientific domains and algorithms/numerical methods to enable “science on day one” and offer lessons that would carry over to the larger ALCF code base.

What’s New

The Theta ESP was modeled after the successful Mira ESP but there are some noteworthy elements included in the ALCF-3 ESP (as the current effort is known internally) that reflect dominant trends in research HPC, one of which is the rise of memory hierarchy. The selection criteria for the projects required feedback on how project PIs would address this architectural shift.

“With these new machines that are coming, there is a small amount of super fast memory and a large amount of super slow memory, and more steps between that and the file system,” said Coghlan, noting the development is born of fiscal necessity.

“Due to the cost of having large amounts of super fast memory, we are going to have these hierarchies and we’re working to understand how that impacts the science and how the scientist can leverage them and extract the best performance given these different hierarchies and different APIs for laying out jobs within the memory.”

Application portability was the other big focus for the ESP. Argonne is partnering with the Berkeley and Oak Ridge labs to support this compatibility between the manycore-based systems at ALCF and NERSC and the GPU-based system at OLCF. Each of the labs has its own early science programs (NESAP at NERSC and CARR at OLCF), and they tried not to overlap projects in order to gain broader coverage. As part of this focus, computational time has been allocated across the sites for the early codes to run not just on their home machines, but on the “sister” machines as well.

Getting Ready for Knights Landing

The early science project researchers along with the support staff at ALCF are working with Cray and Intel on porting and optimizing and tuning their codes for Theta’s KNL-based architecture. They’ve been using an open source simulator called Sniper to assess the performance of their applications. The simulator is outfitted with proprietary modules from Intel that provide the details for KNL. While not a cycle accurate simulator, it is much faster, Coghlan noted. It enables the computer scientists and researchers to analyze applications to see how they will behave on the real hardware. “The project participants have been analyzing the codes within the simulator to see how they might tune it, what they need to tweak, and so forth,” said the project director. “We then provide information back to Intel on the issues we saw, optimization possibilities, etc.”

ALCF does not have KNL hardware on site yet, but the team has run its core CORAL application set (not the early science set) on the KNL hardware at Intel. Argonne is expecting to receive early hardware prior to the actual machines being delivered to the floor and the systems themselves will be delivered ahead of general availability.

The User Experience

Going from the IBM BlueGene/Q Mira to the Cray/Intel x86 ecosystem is a shift for the users and there are some software differences, but Coghlan said she expects a smooth transition to the Cray and Intel compilers due to their high quality and wide deployment. A lot of the other software tools will stay the same as they are supported in both environments. The machines also share the same programming environment, in most cases MPI with OpenMP.

A more significant change, to Coghlan’s mind, is on the networking side, going from a 5-dimensional Torus to a Dragonfly topology.

“It’s very expensive to implement these Torus interconnects, especially in five dimensions. While the Dragonfly is a less expensive solution, it does come with costs to the user.” she explained. “Some of the benefits that we have with the 5D Torus, especially with the way it’s implemented on the BlueGene, we won’t have. For example, on Mira, when you run a job, you are guaranteed that your compute interconnect is conflict-free from anyone else’s job on the machine. It’s electrically isolated. The Dragonfly doesn’t have that capability. We are exploring what to do here and what the impact will be on the user.”

One expected benefit of the architectural shift, according to Coghlan, is that the second and third-generation Xeon Phi processors, KNL and KNH (Knights Hill), will have vectorization, which “should help users get better performance improvements without going to extreme measures.”

Accommodating Data Science

Another key area of focus at Argonne is the move to support more data-intensive science, a segment that is increasingly able to take advantage of leadership-class facility scale resources. “In the past, there were some projects that benefited from this level of compute, but in general many could get by at a smaller scale than what the leadership-class sites provide,” said Coghlan. “Now, there’s more and more science that can take advantage of the resources at the super large scale and we have a number of projects underway that we’ve worked with.”

One of these projects was carried out on Argonne’s Cray data analytics cluster, called Cooley. The work involved big data processing for HPC analytics, specifically using Apache Spark. They didn’t achieve the scale of Mira or the upcoming systems, Coghlan noted, but they had good results getting it to scale better. She sees this as something that’s important to work on for HPC in general, adding that “applications such as Spark and others don’t yet run well at large-scale and the related software is not optimized to run at these scales, but there is a need on the science side to do it.”

When it comes to enabling real-time versus batch processing, Coghlan said that her team is very interested in this area — her colleague Pete Beckman even developed a successful token system to enable “urgent computing” on Teragrid. It’s largely a matter of policy she said: “When you do real-time, there is an assumption of availability — one way to do this is to have preemptions such that a certain amount of resources are guaranteed to be available for the real-time job and when they start running you kill everything that is running on the resources so that the priority job can run. There is also some work that needs to happen on the tech side, notably involving the resource manager.”

The machine learning space is another area that Argonne is pursuing. Coghlan cited the research of James Kermode who used the Mira system to do molecular dynamics on-the-fly incorporating machine learning techniques. She said they are still looking at how best to support those kinds of workloads, given that they can have some unique requirements.

Another project was carried out by Tom LeCompte, the physics coordinator for the ATLAS experiment, to simulate LHC events. Using adaptive grid workflows combined with improvements to I/O and memory usage, the team was able to complete such a large number of ATLAS cycles that if they were a country, they would be the seventh largest provider to the experiment.

“Those are some of the types of things we are seeing the need for — connection to the experimental facilities, the real-time aspect, the machine learning, and the data-intensive technologies that need to work on the machines that don’t yet,” said Coghlan. To this end, Argonne is gearing up to launch a new science program, which for now they are calling “data science program.”

The ALCF leadership team is in the process of drafting up a call for the program, which they hope to announce in the next month or two. The plan is to support an on-going program consisting of four projects debuting each year, two that are technology-based, i.e., focused on improving the performance of certain workflows or technologies (like Spark), and two that are science-focused. The program will benefit from the coming big iron as Theta and Aurora have more data-intensive type resources in terms of larger memory, more interesting memory hierarchies, and vector I/O bandwidth. The projects will also have access to the ALCF staff and potentially the Cray-Intel folks as well. Argonne is getting this effort off the ground despite not receiving any dedicated funding for it.

Towards a Unified Platform

Is the ideal of a modern platform that can straddle the traditional and emerging data-centric workloads achievable? “That’s been something that people have been talking about for quite a while and it wasn’t really clear if you could do it,” Coghlan observed. “I think it can be done — it is a matter of priorities for the machine and the stakeholders. This will be an opportunity for us to explore that space and find out whether it really is doable and whether it makes sense. But right now, most facilities have a compute-focused machine and a data analytics-focused machine, and they don’t tend to mix. At Argonne, starting with the KNL parts and additional memory and storage elements to support data-intensive science, it makes sense to explore doing both on the same hardware.

“Ultimately, we really would prefer to have machines that are more flexible that are able to do and support both types of science especially as the data-heavy science, much of it is supporting compute-intensive and vice versa. We have a lot of coupled things — the cosmology code called HACC (for Hardware/Hybrid Accelerated Cosmology Code), that is looking at dark matter, dark energy, and the origins of the universe. It pulls in the SLOAN sky survey data and does data-analysis work on it but they are also running simulations and comparing the observed data with what they see in their simulations and they want to be able to do those in a coupled fashion and being able to do that in the same machine makes it that much easier.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This