Next Steps for NSCI: Seeking to Ensure a Long and Lively Lifespan

By Bob Sorensen, Research Vice President, HPC Group, IDC

January 27, 2016

It has been six months since the White House released the executive order establishing the National Strategic Computing Initiative (NSCI), the broad interagency research effort seeking to maximize the benefits of high-performance computing (HPC) research, development and deployment across the U.S. public and private sectors. Since then, each of the participating U.S. agencies has prepared and submitted to the President’s Office of Science and Technology Policy (OSTP) their specific plan for going forward. Currently, those plans are being assembled into one overarching document for internal U.S. government planning purposes while a more compact and less-detailed version is being drafted for eventual release to the general public.

At this juncture, however, there is little information coming out of OSTP, the participating agencies, or the overall U.S. budget process — including the Office of Budget and Management and Congress — that provides any additional details or insights as to where the program stands and, perhaps more important, its true future prospects. To date, the bulk of interest in the press — and the HPC community as well — has centered on the aggressive technical aspects of the project: exascale computing architectures, post- CMOS semiconductor technologies, and HPC application development. To be sure, the technical goals for the NSCI are daunting, visionary, and decidedly designed to advance the state-of-the-art in HPC computing capabilities well into the next decade.

However, these goals — aside from their specific performance requirements — are essentially treading familiar ground for the U.S. Government when it comes to high-tech promotion programs that establish specific technology goals, fund the right agencies, get the smartest people on the job, and wait for the results to roll in. Indeed, despite the aggressive nature of the technical goals outlined in the original order, the government policies and practices needed to address these technology challenges are the stock in trade for the U.S. government research community, and the initiative’s chances for success there are accordingly optimistic.

In contrast, there has been less attention paid to some of the non-technical, but perhaps more complicated and challenging, elements of the NSCI that include:

  • Fostering a robust commercial HPC sector that can supply systems to critical U.S. Government missions
  • Keeping the U.S. as the leading supplier nation in an increasingly competitive global HPC sector
  • Broadly deploying HPC capability in the US private sector (both the industrial and service sector) to help ensure that key U.S. businesses can compete more efficiently in the global market
  • Building up an HPC workforce that ensures an adequate number of qualified job applicants and workers for the HPC research, development and deployment disciplines
  • Training a wide range of non-HPC scientists and engineers across a broad range of technical areas to introduce or improve their use of HPC in their overall business processes

Perhaps most important, from a U.S. Government perspective, is that these ambitious missions can only succeed through a whole-of- government effort, where the collective skills of individual government agencies can be brought to bear with a single focus on these critical problems. In other words, the executive order calls for close collaboration among agencies that in some cases have not worked together before.

Bob Sorensen, IDC
Bob Sorensen, IDC

Although it is a given that the various NSCI agencies will pursue their individual goals with their best efforts, it is critical to remember that the NSCI was brought forth by executive order, and it can be easily killed off by another as soon as a new administration takes office. In addition, any administration going forward that wants to sufficiently fund the NSCI will face the challenge of securing a series of annual budget commitments from Congress for at least the next decade. Building a Congressional consensus to ensure the steady flow of funds will not be easy. Scientific and economic considerations aside, there is little within the NSCI plan today that links it explicitly to either end of the political spectrum, so the NSCI has the ability to either appeal to — or be ignored by — either party with equal chance.

This places a substantial burden on NSCI policy planners who, no doubt, will soon be looking for ways to justify funding NSCI work or risk driving agencies to simply relabel existing research efforts under the NSCI label. In the near term, the NSCI should begin gathering success stories to impress upon a new administration, a relatively uncommitted Congress, and an indifferent electorate, that this program can have real value for the future of U.S. technology, economic prowess, and national defense capability. These stories can be either existing exemplars of HPC-driven academic or government scientific developments, outlines of compelling emerging application areas in the HPC world, such as precision medicine, or success stories from the commercial sector on new HPC-based products or processes that drive economic competiveness, particularly those in a global context. An important element of these success stories will be framing them for a number of diverse, but equally important, consumers that encompass and extend well beyond the HPC R&D community: government officials, HPC vendors, current and potential HPC users, journalists, and the non-technical public. Building an overall positive and broad-based consensus on the scientific and economic potential of this program will significantly help its long-term funding prospects

Moving beyond some of the more pressing needs for the NSCI to hit the ground running, there are a number of deeper considerations that program planners will be grappling with in the coming months that bear watching, as progress in these areas will ultimately determine if the program can achieve some of it more ambitious goals. As mentioned earlier, these considerations carry with them a high degree of complexity, as they will be pushing many government agencies into practices that require a whole new way of addressing technological development.

First and foremost, NSCI planners will need to ensure that a wide range of potential HPC technology options are explored by the participating agencies and that risky or innovative technology developments are encouraged — and indeed legitimized — by a continual stream of smart and forward-leaning USG R&D funding as well as hardware/software procurements.

Such efforts will require close coordination across both development and procuring agencies to ensure that the promising technologies are not overlooked, nor that is there an over-commitment to any single technology option. This will require a careful balance between meeting critical mission requirements and inculcating an entrepreneurial spirit into the government’s procurement process. This issue becomes critical now, more than ever, as the HPC sector writ large is undergoing a significant sea change with the merging of traditional HPC, big data analytics, and HPC in the cloud.

NSCI planners must also make a concerted effort to better understand the best — and worst — mechanisms, policies, and practices available for government/industry collaboration. Indeed, going forward, setting up new public/private collaborations may requirement a close examination of — and perhaps even changes to — existing laws, regulations, and policies that cover such partnerships to best enable effective, nimble, and market-relevant activities. In addition, NSCI participants need to make coordinated commercial procurements that meet both specific USG mission requirements and overall NSCI objectives, but that also integrate well into the overall product offerings of the commercial firms that supply those systems. For their part, industrial partners must be prepared to take a more long-term perspective on R&D projects and their demonstrable results, financial or otherwise.

Finally, the NSCI should be on the lookout for ways to generate sufficient interest in HPC technology — and related new computing applications like data science or deep learning — within the academic community. IDC studies confirm that the HPC community is having trouble attracting new talent, and many say that an “Apollo-like program” could generate new and needed enthusiasm within the academic sector, ultimately creating a new cadre of HPC experts coming out of leading universities. As such, the NSCI must consider what steps to take to ensure that the academic sector not only engages with the USG to drive HPC technology forward, but also to help build a new generation of U.S. HPC designers, builders, and, perhaps most important, users across a wide range of academic disciplines and commercial market sectors to help ensure that HPC are used in an ever-increasing base of U.S. public and private high- and low-tech sectors.

Near-term NSCI actions, combined with details of specific agency plans and related budget commitments for the next few years, should be available soon. NSCI watchers everywhere will be on the lookout for clues as to how far reaching the NSCI can be in helping to help drive to the overall vitality of the U.S. HPC community and the American economy, or if this program is doomed to become nothing more than a nice try that failed to make it over the bar.

Author bio:
Bob Sorensen is Research Vice President in IDC’s High Performance Computing group, part of the HPC technical computing team, driving research and consulting efforts in the United States, European, and Asian-Pacific markets for technical servers, supercomputers, clouds, and high performance data analysis. Prior to joining IDC, Mr. Sorensen worked 33 years for the U.S. Federal Government. There he served as a Senior Science and Technology analyst covering global competitive and technical HPC and related advanced computing developments to support senior-level U.S. policy makers, including those in the White House, Department of Defense, and Treasury.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This