Toward a Converged Exascale-Big Data Software Stack

By Tiffany Trader

January 28, 2016

Within the HPC vendor and science community, the groundswell of support for HPC and big data convergence is undeniable with sentiments running the gamut from the pragmatic to the enthusiastic. For Argonne computer scientist and HPC veteran Pete Beckman, the writing is on the wall. As the leader of the Argo exascale software project and one of the principal organizers of the workshop series on Big Data and Extreme-scale Computing (BDEC), Beckman and his collaborators are helping to usher in a new era in research computing, where one machine will be capable of meeting the needs of the extreme-scale simulation and data analysis communities.

The BDEC series of international workshops that Beckman is leading along with Jack Dongarra of the University of Tennessee is premised on the need to systematically map out the ways in which the major issues associated with big data intersect and interact with plans for achieving exascale computing. The overarching goal of BDEC is to create an international collaborative process focused on the co-design of software infrastructure necessary to support both big data and extreme computing for scientific discovery. The effort aligns with one of the primary objectives of the National Strategic Computing Initiative (NSCI): “Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.”

Beckman maintains that these two worlds need to come together to solve bigger and more exciting science problems, and the base technologies themselves are becoming more closely related. “The convergence is happening,” he says.

The extreme-scale computing community, represented by the top 30-40 systems on the TOP500 list, has been singularly focused on extreme simulation and modeling and computing, very often to the exclusion of other communities and technologies, Beckman notes.

“What we’re finding, what the world is finding, is that the big data community, which also has extremely rich problems and exciting problems in correlating massive amounts of data from astronomy, from genomics, and other areas, has very similar needs to the HPC community, but it’s not currently exactly aligned. So these communities sometimes have to build their own infrastructure or develop their own infrastructure that maybe doesn’t run or isn’t supported easily on the HPC software stack and also with respect to the HPC architecture, the actual hardware, architecture and arrangement of components,” he says.

The divide between these two ecosystems is nicely illustrated in the following slide from a presentation that Beckman delivered with Dan Reed of the University of Iowa at the SC15 BDEC workshop.

SC15 BDEC workshop: Exascale and Big Data Convergence, divergent ecosystems slide

On the left side is represented a whole set of technologies that the big data analysis community has embraced, but can appear as “strange words” to the HPCers, says Beckman.

“Not only do they not make sense to the HPC community, they also require operationally a different way to use the system,” Beckman expounds. “So while the HPC community, for example, is very comfortable submitting a large-scale simulation and expecting it will take eight hours or longer before it starts, the analysis community expects to be able to load very large databases into scalable systems and then make queries all day long, 24/7 all year.”

A question posed on the next slide drives home the dichotomy: “Have you ever requested compute and storage for years of continuous data analysis?”

“That just runs contrary to the way we currently imagine the top ten systems in the world,” says Beckman. “No one expects ten percent of a big machine like that to be given over to continuous database queries on climate data or on astronomy data or on genomics data. What we’re finding is that the low level — and this is where we get into Argo — that there are several places where convergence can happen. There really can be a set of software tools and operating system pieces and schedulers and cloud support that can assist both communities, and that is where we are going — that’s the future.”

Argo is an exascale-focused operating system framework that is being designed from the ground up to support the emerging and future needs of both communities. The project aims to strike a balance between reusing software stack components where it makes sense and adding custom efforts when it matters. “At the heart of our project, at the node, we’re leveraging Linux components, and then adding in those pieces of technology that high-performance computing applications need: special kinds of high-performance computing containers, special kinds of power management components that allow us to adjust the electrical power on each node so that we stay within a power budget, and ways to think about concurrency and millions and millions of lightweight threads.”

There are two dominant drivers pushing these worlds together. One is the cost savings. Labs and their funding bodies in the US and abroad can no longer afford to “pay twice” for the components and technology. Further, as Beckman points out, there are also very good technical reasons to enable both kinds of workloads and workflows on the same system. “We save time and improve capability by being able to do both large-data analysis and simulations simultaneously to solve a big scientific problem,” he says.

“This divergent ecosystem view is what we’re observing in BDEC and is what we believe will be changed in the future,” adds Beckman. “We’ll move to a converged software and hardware architecture that allows scientists to do both.”

To be clear here, what is required to align the two ecosystems, and it’s already underway, is the move from a razor thin operating system to a more fully-featured one. This is a cusp moment when increasingly high performance computing applications are wanting something more, says Beckman. For example, they want to run a background data compression at the same time as they run their application or they want to run some data analysis during application and do in-situ visualization during their application.

“Suddenly the application community is saying, we want an operating system that has important features and can create containers for our workflow components and can manage NVRAM in interesting ways because our new systems all have embedded NVRAM and can do interesting compression and data reduction because our bandwidth to I/O is less that we would like,” says Beckman.

“All of the sudden we are back in the situation where we need a robust high performance operating system that extends what you find [in a standard Linux distro] and provides special features for high performance computing. We’re back into the space where vendors and applications and the community all want to be able to support very rich applications and that’s exactly what the big data community needs as well.”

The logical question here is what do you trade if you have a feature that you don’t use? If you only require the operating system to hand over the memory, and the extra functionality is just sitting there, do you pay for that functionality even if your application doesn’t use it? There’s been a lot of research into this question, Beckman tells me, and most of it has shown that that cost is really quite small. “If an application chooses not to use these advanced features, the fact that the system carries support for it doesn’t really slow the application down much, if at all,” he affirms.

Docker and other container technologies are helping to usher in this new era. The overhead that held back HPC adoption of virtualization (and VM-style cloud computing) is virtually non-existent with the container approach, opening up a whole world of possibilities for the flexible use of systems beyond the minimalist’s bare metal. “What they provide,” says Beckman of these newer lightweight frameworks, “is this very rich programming environment, which makes applications more productive and makes it possible for people to string together very complex workflows.”

Beckman acknowledges the existence of what he says is “a pretty small community” of dissenters who continue to uphold the ideal of a pared-down OS and just want to run their one thing. He believes this viewpoint holds less sway as  science domains broadly become more intertwined.

Beckman points to battery storage as an example. In this one domain, there is chemistry at the quantum level happening in the battery; materials questions about how long the actual physical components – the cathode, the anode — can last and how they corrode; and the issue of having this battery in a car and what happens in the event of a crash or fire.

“These are all science questions across multiple scales, all the way from quantum, what’s happening in the chemistry of the battery, up to the collision of one car into another,” says Beckman, “So just solving one science problem where one community says all I want to do is quantum chemistry for my battery sort of misses the bigger picture. We actually have to be able to solve the big data problems. We have to solve simulations that do collision dynamics between cars; we have to solve material aging problems. So we need software stacks that are very rich and very feature-full to provide support for these communities. And when they don’t get that support, they go work on other things. They go design their own computer systems and software stacks.

“We need to understand that our science problems are part of larger whole that we have to solve. Bringing together more tools and more system software facilitates this.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This