Toward a Converged Exascale-Big Data Software Stack

By Tiffany Trader

January 28, 2016

Within the HPC vendor and science community, the groundswell of support for HPC and big data convergence is undeniable with sentiments running the gamut from the pragmatic to the enthusiastic. For Argonne computer scientist and HPC veteran Pete Beckman, the writing is on the wall. As the leader of the Argo exascale software project and one of the principal organizers of the workshop series on Big Data and Extreme-scale Computing (BDEC), Beckman and his collaborators are helping to usher in a new era in research computing, where one machine will be capable of meeting the needs of the extreme-scale simulation and data analysis communities.

The BDEC series of international workshops that Beckman is leading along with Jack Dongarra of the University of Tennessee is premised on the need to systematically map out the ways in which the major issues associated with big data intersect and interact with plans for achieving exascale computing. The overarching goal of BDEC is to create an international collaborative process focused on the co-design of software infrastructure necessary to support both big data and extreme computing for scientific discovery. The effort aligns with one of the primary objectives of the National Strategic Computing Initiative (NSCI): “Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.”

Beckman maintains that these two worlds need to come together to solve bigger and more exciting science problems, and the base technologies themselves are becoming more closely related. “The convergence is happening,” he says.

The extreme-scale computing community, represented by the top 30-40 systems on the TOP500 list, has been singularly focused on extreme simulation and modeling and computing, very often to the exclusion of other communities and technologies, Beckman notes.

“What we’re finding, what the world is finding, is that the big data community, which also has extremely rich problems and exciting problems in correlating massive amounts of data from astronomy, from genomics, and other areas, has very similar needs to the HPC community, but it’s not currently exactly aligned. So these communities sometimes have to build their own infrastructure or develop their own infrastructure that maybe doesn’t run or isn’t supported easily on the HPC software stack and also with respect to the HPC architecture, the actual hardware, architecture and arrangement of components,” he says.

The divide between these two ecosystems is nicely illustrated in the following slide from a presentation that Beckman delivered with Dan Reed of the University of Iowa at the SC15 BDEC workshop.

SC15 BDEC workshop: Exascale and Big Data Convergence, divergent ecosystems slide

On the left side is represented a whole set of technologies that the big data analysis community has embraced, but can appear as “strange words” to the HPCers, says Beckman.

“Not only do they not make sense to the HPC community, they also require operationally a different way to use the system,” Beckman expounds. “So while the HPC community, for example, is very comfortable submitting a large-scale simulation and expecting it will take eight hours or longer before it starts, the analysis community expects to be able to load very large databases into scalable systems and then make queries all day long, 24/7 all year.”

A question posed on the next slide drives home the dichotomy: “Have you ever requested compute and storage for years of continuous data analysis?”

“That just runs contrary to the way we currently imagine the top ten systems in the world,” says Beckman. “No one expects ten percent of a big machine like that to be given over to continuous database queries on climate data or on astronomy data or on genomics data. What we’re finding is that the low level — and this is where we get into Argo — that there are several places where convergence can happen. There really can be a set of software tools and operating system pieces and schedulers and cloud support that can assist both communities, and that is where we are going — that’s the future.”

Argo is an exascale-focused operating system framework that is being designed from the ground up to support the emerging and future needs of both communities. The project aims to strike a balance between reusing software stack components where it makes sense and adding custom efforts when it matters. “At the heart of our project, at the node, we’re leveraging Linux components, and then adding in those pieces of technology that high-performance computing applications need: special kinds of high-performance computing containers, special kinds of power management components that allow us to adjust the electrical power on each node so that we stay within a power budget, and ways to think about concurrency and millions and millions of lightweight threads.”

There are two dominant drivers pushing these worlds together. One is the cost savings. Labs and their funding bodies in the US and abroad can no longer afford to “pay twice” for the components and technology. Further, as Beckman points out, there are also very good technical reasons to enable both kinds of workloads and workflows on the same system. “We save time and improve capability by being able to do both large-data analysis and simulations simultaneously to solve a big scientific problem,” he says.

“This divergent ecosystem view is what we’re observing in BDEC and is what we believe will be changed in the future,” adds Beckman. “We’ll move to a converged software and hardware architecture that allows scientists to do both.”

To be clear here, what is required to align the two ecosystems, and it’s already underway, is the move from a razor thin operating system to a more fully-featured one. This is a cusp moment when increasingly high performance computing applications are wanting something more, says Beckman. For example, they want to run a background data compression at the same time as they run their application or they want to run some data analysis during application and do in-situ visualization during their application.

“Suddenly the application community is saying, we want an operating system that has important features and can create containers for our workflow components and can manage NVRAM in interesting ways because our new systems all have embedded NVRAM and can do interesting compression and data reduction because our bandwidth to I/O is less that we would like,” says Beckman.

“All of the sudden we are back in the situation where we need a robust high performance operating system that extends what you find [in a standard Linux distro] and provides special features for high performance computing. We’re back into the space where vendors and applications and the community all want to be able to support very rich applications and that’s exactly what the big data community needs as well.”

The logical question here is what do you trade if you have a feature that you don’t use? If you only require the operating system to hand over the memory, and the extra functionality is just sitting there, do you pay for that functionality even if your application doesn’t use it? There’s been a lot of research into this question, Beckman tells me, and most of it has shown that that cost is really quite small. “If an application chooses not to use these advanced features, the fact that the system carries support for it doesn’t really slow the application down much, if at all,” he affirms.

Docker and other container technologies are helping to usher in this new era. The overhead that held back HPC adoption of virtualization (and VM-style cloud computing) is virtually non-existent with the container approach, opening up a whole world of possibilities for the flexible use of systems beyond the minimalist’s bare metal. “What they provide,” says Beckman of these newer lightweight frameworks, “is this very rich programming environment, which makes applications more productive and makes it possible for people to string together very complex workflows.”

Beckman acknowledges the existence of what he says is “a pretty small community” of dissenters who continue to uphold the ideal of a pared-down OS and just want to run their one thing. He believes this viewpoint holds less sway as  science domains broadly become more intertwined.

Beckman points to battery storage as an example. In this one domain, there is chemistry at the quantum level happening in the battery; materials questions about how long the actual physical components – the cathode, the anode — can last and how they corrode; and the issue of having this battery in a car and what happens in the event of a crash or fire.

“These are all science questions across multiple scales, all the way from quantum, what’s happening in the chemistry of the battery, up to the collision of one car into another,” says Beckman, “So just solving one science problem where one community says all I want to do is quantum chemistry for my battery sort of misses the bigger picture. We actually have to be able to solve the big data problems. We have to solve simulations that do collision dynamics between cars; we have to solve material aging problems. So we need software stacks that are very rich and very feature-full to provide support for these communities. And when they don’t get that support, they go work on other things. They go design their own computer systems and software stacks.

“We need to understand that our science problems are part of larger whole that we have to solve. Bringing together more tools and more system software facilitates this.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This