Toward a Converged Exascale-Big Data Software Stack

By Tiffany Trader

January 28, 2016

Within the HPC vendor and science community, the groundswell of support for HPC and big data convergence is undeniable with sentiments running the gamut from the pragmatic to the enthusiastic. For Argonne computer scientist and HPC veteran Pete Beckman, the writing is on the wall. As the leader of the Argo exascale software project and one of the principal organizers of the workshop series on Big Data and Extreme-scale Computing (BDEC), Beckman and his collaborators are helping to usher in a new era in research computing, where one machine will be capable of meeting the needs of the extreme-scale simulation and data analysis communities.

The BDEC series of international workshops that Beckman is leading along with Jack Dongarra of the University of Tennessee is premised on the need to systematically map out the ways in which the major issues associated with big data intersect and interact with plans for achieving exascale computing. The overarching goal of BDEC is to create an international collaborative process focused on the co-design of software infrastructure necessary to support both big data and extreme computing for scientific discovery. The effort aligns with one of the primary objectives of the National Strategic Computing Initiative (NSCI): “Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.”

Beckman maintains that these two worlds need to come together to solve bigger and more exciting science problems, and the base technologies themselves are becoming more closely related. “The convergence is happening,” he says.

The extreme-scale computing community, represented by the top 30-40 systems on the TOP500 list, has been singularly focused on extreme simulation and modeling and computing, very often to the exclusion of other communities and technologies, Beckman notes.

“What we’re finding, what the world is finding, is that the big data community, which also has extremely rich problems and exciting problems in correlating massive amounts of data from astronomy, from genomics, and other areas, has very similar needs to the HPC community, but it’s not currently exactly aligned. So these communities sometimes have to build their own infrastructure or develop their own infrastructure that maybe doesn’t run or isn’t supported easily on the HPC software stack and also with respect to the HPC architecture, the actual hardware, architecture and arrangement of components,” he says.

The divide between these two ecosystems is nicely illustrated in the following slide from a presentation that Beckman delivered with Dan Reed of the University of Iowa at the SC15 BDEC workshop.

SC15 BDEC workshop: Exascale and Big Data Convergence, divergent ecosystems slide

On the left side is represented a whole set of technologies that the big data analysis community has embraced, but can appear as “strange words” to the HPCers, says Beckman.

“Not only do they not make sense to the HPC community, they also require operationally a different way to use the system,” Beckman expounds. “So while the HPC community, for example, is very comfortable submitting a large-scale simulation and expecting it will take eight hours or longer before it starts, the analysis community expects to be able to load very large databases into scalable systems and then make queries all day long, 24/7 all year.”

A question posed on the next slide drives home the dichotomy: “Have you ever requested compute and storage for years of continuous data analysis?”

“That just runs contrary to the way we currently imagine the top ten systems in the world,” says Beckman. “No one expects ten percent of a big machine like that to be given over to continuous database queries on climate data or on astronomy data or on genomics data. What we’re finding is that the low level — and this is where we get into Argo — that there are several places where convergence can happen. There really can be a set of software tools and operating system pieces and schedulers and cloud support that can assist both communities, and that is where we are going — that’s the future.”

Argo is an exascale-focused operating system framework that is being designed from the ground up to support the emerging and future needs of both communities. The project aims to strike a balance between reusing software stack components where it makes sense and adding custom efforts when it matters. “At the heart of our project, at the node, we’re leveraging Linux components, and then adding in those pieces of technology that high-performance computing applications need: special kinds of high-performance computing containers, special kinds of power management components that allow us to adjust the electrical power on each node so that we stay within a power budget, and ways to think about concurrency and millions and millions of lightweight threads.”

There are two dominant drivers pushing these worlds together. One is the cost savings. Labs and their funding bodies in the US and abroad can no longer afford to “pay twice” for the components and technology. Further, as Beckman points out, there are also very good technical reasons to enable both kinds of workloads and workflows on the same system. “We save time and improve capability by being able to do both large-data analysis and simulations simultaneously to solve a big scientific problem,” he says.

“This divergent ecosystem view is what we’re observing in BDEC and is what we believe will be changed in the future,” adds Beckman. “We’ll move to a converged software and hardware architecture that allows scientists to do both.”

To be clear here, what is required to align the two ecosystems, and it’s already underway, is the move from a razor thin operating system to a more fully-featured one. This is a cusp moment when increasingly high performance computing applications are wanting something more, says Beckman. For example, they want to run a background data compression at the same time as they run their application or they want to run some data analysis during application and do in-situ visualization during their application.

“Suddenly the application community is saying, we want an operating system that has important features and can create containers for our workflow components and can manage NVRAM in interesting ways because our new systems all have embedded NVRAM and can do interesting compression and data reduction because our bandwidth to I/O is less that we would like,” says Beckman.

“All of the sudden we are back in the situation where we need a robust high performance operating system that extends what you find [in a standard Linux distro] and provides special features for high performance computing. We’re back into the space where vendors and applications and the community all want to be able to support very rich applications and that’s exactly what the big data community needs as well.”

The logical question here is what do you trade if you have a feature that you don’t use? If you only require the operating system to hand over the memory, and the extra functionality is just sitting there, do you pay for that functionality even if your application doesn’t use it? There’s been a lot of research into this question, Beckman tells me, and most of it has shown that that cost is really quite small. “If an application chooses not to use these advanced features, the fact that the system carries support for it doesn’t really slow the application down much, if at all,” he affirms.

Docker and other container technologies are helping to usher in this new era. The overhead that held back HPC adoption of virtualization (and VM-style cloud computing) is virtually non-existent with the container approach, opening up a whole world of possibilities for the flexible use of systems beyond the minimalist’s bare metal. “What they provide,” says Beckman of these newer lightweight frameworks, “is this very rich programming environment, which makes applications more productive and makes it possible for people to string together very complex workflows.”

Beckman acknowledges the existence of what he says is “a pretty small community” of dissenters who continue to uphold the ideal of a pared-down OS and just want to run their one thing. He believes this viewpoint holds less sway as  science domains broadly become more intertwined.

Beckman points to battery storage as an example. In this one domain, there is chemistry at the quantum level happening in the battery; materials questions about how long the actual physical components – the cathode, the anode — can last and how they corrode; and the issue of having this battery in a car and what happens in the event of a crash or fire.

“These are all science questions across multiple scales, all the way from quantum, what’s happening in the chemistry of the battery, up to the collision of one car into another,” says Beckman, “So just solving one science problem where one community says all I want to do is quantum chemistry for my battery sort of misses the bigger picture. We actually have to be able to solve the big data problems. We have to solve simulations that do collision dynamics between cars; we have to solve material aging problems. So we need software stacks that are very rich and very feature-full to provide support for these communities. And when they don’t get that support, they go work on other things. They go design their own computer systems and software stacks.

“We need to understand that our science problems are part of larger whole that we have to solve. Bringing together more tools and more system software facilitates this.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire