Toward a Converged Exascale-Big Data Software Stack

By Tiffany Trader

January 28, 2016

Within the HPC vendor and science community, the groundswell of support for HPC and big data convergence is undeniable with sentiments running the gamut from the pragmatic to the enthusiastic. For Argonne computer scientist and HPC veteran Pete Beckman, the writing is on the wall. As the leader of the Argo exascale software project and one of the principal organizers of the workshop series on Big Data and Extreme-scale Computing (BDEC), Beckman and his collaborators are helping to usher in a new era in research computing, where one machine will be capable of meeting the needs of the extreme-scale simulation and data analysis communities.

The BDEC series of international workshops that Beckman is leading along with Jack Dongarra of the University of Tennessee is premised on the need to systematically map out the ways in which the major issues associated with big data intersect and interact with plans for achieving exascale computing. The overarching goal of BDEC is to create an international collaborative process focused on the co-design of software infrastructure necessary to support both big data and extreme computing for scientific discovery. The effort aligns with one of the primary objectives of the National Strategic Computing Initiative (NSCI): “Increasing coherence between the technology base used for modeling and simulation and that used for data analytic computing.”

Beckman maintains that these two worlds need to come together to solve bigger and more exciting science problems, and the base technologies themselves are becoming more closely related. “The convergence is happening,” he says.

The extreme-scale computing community, represented by the top 30-40 systems on the TOP500 list, has been singularly focused on extreme simulation and modeling and computing, very often to the exclusion of other communities and technologies, Beckman notes.

“What we’re finding, what the world is finding, is that the big data community, which also has extremely rich problems and exciting problems in correlating massive amounts of data from astronomy, from genomics, and other areas, has very similar needs to the HPC community, but it’s not currently exactly aligned. So these communities sometimes have to build their own infrastructure or develop their own infrastructure that maybe doesn’t run or isn’t supported easily on the HPC software stack and also with respect to the HPC architecture, the actual hardware, architecture and arrangement of components,” he says.

The divide between these two ecosystems is nicely illustrated in the following slide from a presentation that Beckman delivered with Dan Reed of the University of Iowa at the SC15 BDEC workshop.

SC15 BDEC workshop: Exascale and Big Data Convergence, divergent ecosystems slide

On the left side is represented a whole set of technologies that the big data analysis community has embraced, but can appear as “strange words” to the HPCers, says Beckman.

“Not only do they not make sense to the HPC community, they also require operationally a different way to use the system,” Beckman expounds. “So while the HPC community, for example, is very comfortable submitting a large-scale simulation and expecting it will take eight hours or longer before it starts, the analysis community expects to be able to load very large databases into scalable systems and then make queries all day long, 24/7 all year.”

A question posed on the next slide drives home the dichotomy: “Have you ever requested compute and storage for years of continuous data analysis?”

“That just runs contrary to the way we currently imagine the top ten systems in the world,” says Beckman. “No one expects ten percent of a big machine like that to be given over to continuous database queries on climate data or on astronomy data or on genomics data. What we’re finding is that the low level — and this is where we get into Argo — that there are several places where convergence can happen. There really can be a set of software tools and operating system pieces and schedulers and cloud support that can assist both communities, and that is where we are going — that’s the future.”

Argo is an exascale-focused operating system framework that is being designed from the ground up to support the emerging and future needs of both communities. The project aims to strike a balance between reusing software stack components where it makes sense and adding custom efforts when it matters. “At the heart of our project, at the node, we’re leveraging Linux components, and then adding in those pieces of technology that high-performance computing applications need: special kinds of high-performance computing containers, special kinds of power management components that allow us to adjust the electrical power on each node so that we stay within a power budget, and ways to think about concurrency and millions and millions of lightweight threads.”

There are two dominant drivers pushing these worlds together. One is the cost savings. Labs and their funding bodies in the US and abroad can no longer afford to “pay twice” for the components and technology. Further, as Beckman points out, there are also very good technical reasons to enable both kinds of workloads and workflows on the same system. “We save time and improve capability by being able to do both large-data analysis and simulations simultaneously to solve a big scientific problem,” he says.

“This divergent ecosystem view is what we’re observing in BDEC and is what we believe will be changed in the future,” adds Beckman. “We’ll move to a converged software and hardware architecture that allows scientists to do both.”

To be clear here, what is required to align the two ecosystems, and it’s already underway, is the move from a razor thin operating system to a more fully-featured one. This is a cusp moment when increasingly high performance computing applications are wanting something more, says Beckman. For example, they want to run a background data compression at the same time as they run their application or they want to run some data analysis during application and do in-situ visualization during their application.

“Suddenly the application community is saying, we want an operating system that has important features and can create containers for our workflow components and can manage NVRAM in interesting ways because our new systems all have embedded NVRAM and can do interesting compression and data reduction because our bandwidth to I/O is less that we would like,” says Beckman.

“All of the sudden we are back in the situation where we need a robust high performance operating system that extends what you find [in a standard Linux distro] and provides special features for high performance computing. We’re back into the space where vendors and applications and the community all want to be able to support very rich applications and that’s exactly what the big data community needs as well.”

The logical question here is what do you trade if you have a feature that you don’t use? If you only require the operating system to hand over the memory, and the extra functionality is just sitting there, do you pay for that functionality even if your application doesn’t use it? There’s been a lot of research into this question, Beckman tells me, and most of it has shown that that cost is really quite small. “If an application chooses not to use these advanced features, the fact that the system carries support for it doesn’t really slow the application down much, if at all,” he affirms.

Docker and other container technologies are helping to usher in this new era. The overhead that held back HPC adoption of virtualization (and VM-style cloud computing) is virtually non-existent with the container approach, opening up a whole world of possibilities for the flexible use of systems beyond the minimalist’s bare metal. “What they provide,” says Beckman of these newer lightweight frameworks, “is this very rich programming environment, which makes applications more productive and makes it possible for people to string together very complex workflows.”

Beckman acknowledges the existence of what he says is “a pretty small community” of dissenters who continue to uphold the ideal of a pared-down OS and just want to run their one thing. He believes this viewpoint holds less sway as  science domains broadly become more intertwined.

Beckman points to battery storage as an example. In this one domain, there is chemistry at the quantum level happening in the battery; materials questions about how long the actual physical components – the cathode, the anode — can last and how they corrode; and the issue of having this battery in a car and what happens in the event of a crash or fire.

“These are all science questions across multiple scales, all the way from quantum, what’s happening in the chemistry of the battery, up to the collision of one car into another,” says Beckman, “So just solving one science problem where one community says all I want to do is quantum chemistry for my battery sort of misses the bigger picture. We actually have to be able to solve the big data problems. We have to solve simulations that do collision dynamics between cars; we have to solve material aging problems. So we need software stacks that are very rich and very feature-full to provide support for these communities. And when they don’t get that support, they go work on other things. They go design their own computer systems and software stacks.

“We need to understand that our science problems are part of larger whole that we have to solve. Bringing together more tools and more system software facilitates this.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This