Biomedical Simulation at PSC Gets Major Performance Boost with Anton 2

By John Russell

February 5, 2016

Simulating even small biological systems has long proven computationally difficult. Practically speaking, data-driven bioinformatics such as DNA sequence analysis has progressed more rapidly. Development of Anton 1, the ASIC-based supercomputer specifically designed for simulating molecular dynamics by D. E. Shaw Research (DESRES) in 2008, was a major advance. In 2010 DESRES provided an Anton machine at no charge to the Pittsburgh Supercomputer Center (PSC), which in turn provided access to a wider biomedical research community.

History is now repeating itself. Anton 2, a significant upgrade, was developed in 2014 and PSC announced this week it planned to retire its Anton 1 and provide access to an Anton 2 machine in the fall 2016. As with the first machine, DESRES is providing the supercomputer at no cost. NIH awarded a $1.8 million grant to PSC in support. The new system, though somewhat smaller than its predecessor (128 nodes versus 512) is four times faster and can simulate molecular systems roughly five times larger.

“That opens up all kinds of interesting biological problems,” said Phil Blood, principal investigator of the new grant and senior computational scientist at PSC. Besides accurate prediction of protein folding – long a holy grail of computational biology – simulation of signal transduction, key binding activities, and important molecule conformational changes should all be more do-able.

Simulations run on Anton 1 were typically limited to biomolecular systems of 150,000 to 200,000 atoms in a defined volume. Anton 2 is expected to be able to simulate systems with on the order of 700,000 atoms substantially expanding the size and complexity of potential projects. Just as important, Anton 2’s higher speed will allow investigators to increase the biological timelines, moving closer to the goal of the practical millisecond simulation, long enough for meaningful biological activities to occur.

Molecular dynamics simulations can provide insights into the behavior of proteins, cell membranes, nucleic acids, and other molecules at the atomic scale. But even the most advanced general-purpose supercomputers struggle to simulate beyond the microsecond level—a thousand times shorter than the millisecond level—without taking months of computational time. Anton 1 has changed this, giving researchers practical access to simulations at longer timescales but within limits.

Anton 1 Supercomputer
Anton 1 Supercomputer

“On Anton 1 it took months of dedicated time to achieve a millisecond scale,” said Blood. Given that Anton 1 is a shared resource, achieving millisecond simulation has been basically unfeasible. “We were seeing single digit microseconds to tens of microseconds of simulation. Some investigators would study one system for a very long time and then they might get up to 100 microseconds, but most do several simulation on the scale of 10 microseconds,” said Blood.

Using Anton 2 Blood expects investigators will be able to routinely simulate tens of microseconds up to hundreds of microseconds of biological time. “You start to get really close to that millisecond scale where a lot of interesting biology happens,” he said.

The Anton 1 supercomputer that has been in use at PSC since 2010 has so far enabled 277 simulation projects by 127 different PIs across the US and resulted in more than 120 peer-reviewed research papers. Three of these studies appeared in the scientific journal Nature, one of the international scientific community’s premier publications.

Development of the Anton systems (named for the legendary microbiologist Anton van Leeuwenhoek) is part of David Shaw’s impressive work. Shaw, a computational scientist turned hedge fund manager, famously made a fortune on Wall Street and then turned his efforts and resources to computational biochemistry and biology. He is founder and chief scientist of DESRE and a senior research fellow at the Center for Computational Biology and Bioinformatics, Columbia University. Anton 1, developed by his group, broke important new ground in specialized supercomputing.

PSC expectations are high for Anton 2. A fairly detailed look at Anton 2’s architecture, detailing improvements relative to Anton 1, is presented is in a 2014 paper, Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. The work was presented at SC14 and is available from the ACM digital library.[i] Here is the abstract and a brief except: presented below.

“Abstract: Anton 2 is a second-generation special-purpose supercomputer for molecular dynamics simulations that achieves significant gains in performance, programmability, and capacity compared to its predecessor, Anton 1. The architecture of Anton 2 is tailored for fine-grained event-driven operation, which improves performance by increasing the overlap of computation with communication, and also allows a wider range of algorithms to run efficiently, enabling many new software-based optimizations. A 512-node Anton 2 machine, currently in operation, is up to ten times faster than Anton 1 with the same number of nodes, greatly expanding the reach of all-atom biomolecular simulations. Anton 2 is the first platform to achieve simulation rates of multiple microseconds of physical time per day for systems with millions of atoms. Demonstrating strong scaling, the machine simulates a standard 23,558-atom benchmark system at a rate of 85 μs/day—180 times faster than any commodity hardware plat- form or general-purpose supercomputer. “

Excerpt: “We have designed and built Anton 2, a special-purpose supercomputer for MD simulation that outperforms Anton 1 by up to an order of magnitude and outperforms currently available general-purpose hardware by two orders of magnitude, while simultaneously presenting a simpler, more flexible programming model than Anton 1. Like its predecessor, Anton 2 performs the entire MD computation within custom ASICs that are tightly interconnected by a specialized high-performance network. Each ASIC devotes a quarter of its die area to specialized hardware pipelines for calculating interactions between pairs of atoms, and also contains 66 general-purpose programmable processor cores that deliver data to these pipelines and perform the remaining computations required by the MD simulation.

“Improvements in VLSI chip fabrication technology provide Anton 2 with more computational units than Anton 1, but due to the overheads of distributing work to and coordinating a larger number of units, this alone is insufficient to deliver proportionally better performance. A key component of the Anton 2 design is thus a set of new mechanisms devoted to efficient fine-grained operation. The resulting architecture more aggressively exploits the parallelism of MD simulations, which fundamentally consist of a large number of fine-grained computations involving individual atoms or small groups of atoms. By providing direct hardware support for fine-grained communication and synchronization [20, 52], Anton 2 allows these computations to be distributed across an increased number of functional units while maintaining high utilization of the underlying hardware resources.”

Blood notes that programming is usually challenging for first-time Anton users. “The system is different from anything they are used to working with; it isn’t using any molecular dynamics code people have used before, at least in terms of the general research community. They are not going to run NAMD or GROMACS or Amber on Anton. The most computational intense parts of the MD algorithms are expressed directly in hardware. We always have the investigators come to a workshop at the beginning of the year,” said Blood.

Details of the Anton 2 deployment and what exactly will happen to Anton 1 are still being discussed according to Blood. Anton 1, like the new machine, still belongs to DESRES. NIH supported that effort with a $2.7 million grant.

“Sometime in the spring we will release a request for proposals for the new Anton 2 system. Current allocations on the Anton 1 will finish at the end of July so sometimes between the end of July and beginning of the new round of allocations in late fall, we will de-install the current Anton 1 system and install the Anton 2,” said Blood. More information on the Anton project at PSC can be found at https://www.psc.edu/index.php/computing-resources/anton

[i] LINK to paper http://dl.acm.org/citation.cfm?id=2683599

Anton 1 Photo Credit: Matt Simmons

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell’s AMD-Powered Server Line Targets High-End Jobs

September 17, 2019

Dell Technologies rolled out five new servers this week based on AMD’s latest Epyc processor that are geared toward data-driven workloads running on increasingly popular multi-cloud platforms as well as in the HPC data Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Rumors of My Death Are Still Exaggerated: The Mainframe

[Connect with Spectrum users and learn new skills in the IBM Spectrum LSF User Community.]

As of 2017, 92 of the world’s top 100 banks used mainframes. Read more…

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This