Budget Request Reveals New Elements of US Exascale Program

By Tiffany Trader

February 12, 2016

A drill down into the FY2017 budget released by the Obama administration on Tuesday brings to light important information about the United States’ exascale program. As we reported in earlier coverage of the budget announcement, this is the first time that real numbers have been proposed for the National Strategic Computing Initiative (NSCI) since it was announced by executive order on July 29, 2015.

With this budget, the strategy of a coherent, connected and overarching exascale-targeted program, unified under the NSCI banner, begins to reveal itself. The budget proposes an investment of $285 million for NSCI on the DOE side and another $33 million for the NSF ledger. Beyond this $318 million sum, there are still other agencies to consider since as you’ll recall, NSCI is very strongly a multi-agency effort. In addition to the three leads — the Department of Energy (DOE), the Department of Defense (DOD), and the National Science Foundation (NSF) — there are two foundational research and development agencies (the Intelligence Advanced Research Projects Activity (IARPA) and the National Institute of Standards and Technology (NIST)); and five deployment agencies identified (the National Aeronautics and Space Administration, the Federal Bureau of Investigation, the National Institutes of Health, the Department of Homeland Security, and the National Oceanic and Atmospheric Administration). It is not clear at this point, what the full scope of funding entails.

As a DOE crosscut, exascale funding, linked to the Exascale Computing Initiative, is set to go from FY 2016 enacted levels of $252.6 million to $285 million in FY 2017, an increase of more than $32.3 million. Total Office of Science exascale investment is set to increase from $188.6 million in FY16 to $190 million in FY17; and NNSA exascale spending (under the domain of Advanced Simulation and Computing) is set to increase from $64 million to $95 million in the same period, as depicted in the chart below, extracted from the Department of Energy FY 2017 Congressional budget request.

Exascale Computing Initiative funding FY16vFY17

Very significantly, the Exascale Computing Project is also introduced by this budget. As explained in a presentation prepared by Cherry A. Murray, PhD, director of Office of Science, “ECP is initiated as a joint ASCR/NNSA partnership using DOE’s formal project management processes.” Further the budget proposes to transition the Exascale Computing Initiative to the Science Exascale Computing Project in FY17, and to satisfy this change, a new budget line was created, SC-ECP, with a proposed budget of $154 million.

ASCR FY 2017 Budget Request to Congress p8 slide

In an interview with HPCwire, Dan Reed, vice president for research and economic development at the University of Iowa and chair of the Advanced Scientific Computing Advisory Committee (ASCAC), shed light on the finer points of the budget’s exascale funding elements and clarified the distinctions between ECI, which will still go on, and ECP, which is being led by Paul Messina, senior strategic advisor of Argonne Leadership Computing Facility. “The ECP is ultimately an execution plan to deliver machines,” Reed shared, adding, “It is the whole process associated with the the deliverables. It’s not just procurement, it’s the development of the whole program.”

Reed emphasized that ECI still exists and will continue to focus on R&D issues related to exascale. “The high-level takeaway is that ECP got funded as a program line and the money that had been parked in ASCR got mostly moved into that, and both ECP and ECI are part of the DOE’s response to the NSCI,” said Reed.

Offering additional insight, Reed explained, “Before [the creation of the new line item for ECP], the place where the exascale R&D money was parked was in the math, computational and computer science part. With this change, the computing-research part of ASCR in some sense will go back to its core mission before the start of exascale which is doing basic and applied research in computer science, computational science and applied mathematics. So in some sense, that’s a return to the past.”

We learn from the Office of Science’s budget proposal that ECP will be “managed according to the project management principles of DOE Order 413.3b” and that an ECP Project Office has been established Oak Ridge National Lab.

DOE Order 413.3B refers to the “Program and Project Management for the Acquisition of Capital Assets” and it’s the process by which DOE stands up capital assets.

“Remember,” said Reed, “that DOE has a well-defined process for standing up new scientific instruments, whether that be historically things like the Advanced Photon Source at Argonne or the Spallation Neutron Source at Oak Ridge, or the heavy ion accelerators. They have a well-defined process that includes work breakdown structures, reviews, and delivery checks. That is the part that is ECP. It is a march to an operational facility. It’s not just procurement because there is obviously some magic that has to take place before that in terms of the R&D but it is driven by a focus on establishing an operational facility. That is the same process they would use to stand up any other instrument the DOE operates.”

Asked for his personal take on the likelihood of the budget getting funded, Reed said he thinks that the President’s proposed budget aligns with what expectations were. “The budget is really a placeholder, given the election process,” he said. “There’s a high-probability there will be a continuing resolution rather than a approved budget, but having said that, I think it’s very likely that the new money will appear for DOE to move forward with exascale.”

When asked for comment, Tim Polk, assistant director of Cybersecurity with the White House Office of Science and Technology Policy (OSTP), highlighted the importance of exascale computing for the maintenance of US leadership over the coming decades. “The United States must make strategic investments in High-Performance Computing to meet increasing computing demands and emerging technological challenges,” he said, noting that with the proposed $285 million in exascale computing investment at DOE and an additional $33 million in NSCI-focused programs at NSF, combined with existing HPC streams, the BRAIN initiative and other activities, “the NSCI agencies are well-positioned to advance key technologies during FY17.”

This marker of progress toward a national exascale computing program also inspired Jack Dongarra, distinguished professor of computer science in the Electrical Engineering and Computer Science Department at the University of Tennessee, to share the following commentary:

This past summer’s announcement of President Obama’s National Strategic Computing Initiative (NSCI) should usher in a national environment for scientific research that will help the Innovative Computing Laboratory to continue to thrive. Aspiring to “… create systems that can apply exaflops of computing power to exabytes of data,” the NSCI proposes to establish a coordinated, long term, multiagency strategy for improving the nation’s economic competitiveness and research prowess by raising its high performance computing and data analysis capabilities to unprecedented heights.

I remember very well the last time—more than 15 years ago—when such an ambitious federal initiative was launched because it was my long time friend and collaborator, the late Ken Kennedy, who led the President’s Information Technology Advisory Committee (PITAC) that produced the Information Technology Research: Investing in Our Future report. If the NSCI generates, over time, the same kind of national research environment that Ken’s PITAC report did, then the future prospects for Computing will indeed be bright.

The reviewed budget documents did not mention a deadline for an exascale deployment, but we know that ECI’s goal is to deploy capable exascale computing systems by 2023.

The DOE budget request reflects a trend of heightened focus on exascale computing. The word “exascale” shows up 26 times — that’s 10 more than last year. Continued funding for exascale computing is an official program highlight, with the following commentary provided as a statement of justification:

Exascale Computing: Enables U.S. leadership in the next generation of high performance computing

Since the beginning of the digital era, the U.S. Federal government has made pivotal investments in the computer industry at critical times when market progress was stagnating. We are once again at a critical turning point in high performance computing (HPC) technology, with industry innovations in hardware and software architectures driving advances in computing performance, but where the performance of application codes is suffering because the technology advances are not optimized for memory intensive, floating point HPC use. Yet the importance of HPC simulations is increasing as the U.S. faces serious and urgent economic, environmental, and national security challenges based on dynamic changes in the energy and climate systems, as well as growing security threats. Providing tools for solving these and future problems requires exascale capabilities. Committed U.S. leadership toward exascale computing is a critical contributor to our competitiveness in science, national defense, and energy innovation as well as the commercial computing market.  Equally important, a robust domestic industry contributes to our nation’s security by helping avoid unacceptable cybersecurity and computer supply chain risks.   

Addressing this national challenge requires a significant investment by the Federal government involving strong leadership from the Department and close coordination with national laboratories, industry, and academia. The Exascale Computing crosscutting initiative is organized around four pillars: application development, software technology, hardware technology, and exascale systems. In FY 2017, DOE proposes to expand its efforts in the first three technical focus areas, and begin efforts in the fourth focus area in FY 2018.  

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC will Build OzStar – Swinburne’s New Supercomputer to Study Gravity

August 16, 2017

Dell EMC announced yesterday it is building a new supercomputer – the OzStar – for the Swinburne University of Technology (Australia) in support the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based system on the STREAM benchmark and on a test case running ANS Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capa Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This