Budget Request Reveals New Elements of US Exascale Program

By Tiffany Trader

February 12, 2016

A drill down into the FY2017 budget released by the Obama administration on Tuesday brings to light important information about the United States’ exascale program. As we reported in earlier coverage of the budget announcement, this is the first time that real numbers have been proposed for the National Strategic Computing Initiative (NSCI) since it was announced by executive order on July 29, 2015.

With this budget, the strategy of a coherent, connected and overarching exascale-targeted program, unified under the NSCI banner, begins to reveal itself. The budget proposes an investment of $285 million for NSCI on the DOE side and another $33 million for the NSF ledger. Beyond this $318 million sum, there are still other agencies to consider since as you’ll recall, NSCI is very strongly a multi-agency effort. In addition to the three leads — the Department of Energy (DOE), the Department of Defense (DOD), and the National Science Foundation (NSF) — there are two foundational research and development agencies (the Intelligence Advanced Research Projects Activity (IARPA) and the National Institute of Standards and Technology (NIST)); and five deployment agencies identified (the National Aeronautics and Space Administration, the Federal Bureau of Investigation, the National Institutes of Health, the Department of Homeland Security, and the National Oceanic and Atmospheric Administration). It is not clear at this point, what the full scope of funding entails.

As a DOE crosscut, exascale funding, linked to the Exascale Computing Initiative, is set to go from FY 2016 enacted levels of $252.6 million to $285 million in FY 2017, an increase of more than $32.3 million. Total Office of Science exascale investment is set to increase from $188.6 million in FY16 to $190 million in FY17; and NNSA exascale spending (under the domain of Advanced Simulation and Computing) is set to increase from $64 million to $95 million in the same period, as depicted in the chart below, extracted from the Department of Energy FY 2017 Congressional budget request.

Exascale Computing Initiative funding FY16vFY17

Very significantly, the Exascale Computing Project is also introduced by this budget. As explained in a presentation prepared by Cherry A. Murray, PhD, director of Office of Science, “ECP is initiated as a joint ASCR/NNSA partnership using DOE’s formal project management processes.” Further the budget proposes to transition the Exascale Computing Initiative to the Science Exascale Computing Project in FY17, and to satisfy this change, a new budget line was created, SC-ECP, with a proposed budget of $154 million.

ASCR FY 2017 Budget Request to Congress p8 slide

In an interview with HPCwire, Dan Reed, vice president for research and economic development at the University of Iowa and chair of the Advanced Scientific Computing Advisory Committee (ASCAC), shed light on the finer points of the budget’s exascale funding elements and clarified the distinctions between ECI, which will still go on, and ECP, which is being led by Paul Messina, senior strategic advisor of Argonne Leadership Computing Facility. “The ECP is ultimately an execution plan to deliver machines,” Reed shared, adding, “It is the whole process associated with the the deliverables. It’s not just procurement, it’s the development of the whole program.”

Reed emphasized that ECI still exists and will continue to focus on R&D issues related to exascale. “The high-level takeaway is that ECP got funded as a program line and the money that had been parked in ASCR got mostly moved into that, and both ECP and ECI are part of the DOE’s response to the NSCI,” said Reed.

Offering additional insight, Reed explained, “Before [the creation of the new line item for ECP], the place where the exascale R&D money was parked was in the math, computational and computer science part. With this change, the computing-research part of ASCR in some sense will go back to its core mission before the start of exascale which is doing basic and applied research in computer science, computational science and applied mathematics. So in some sense, that’s a return to the past.”

We learn from the Office of Science’s budget proposal that ECP will be “managed according to the project management principles of DOE Order 413.3b” and that an ECP Project Office has been established Oak Ridge National Lab.

DOE Order 413.3B refers to the “Program and Project Management for the Acquisition of Capital Assets” and it’s the process by which DOE stands up capital assets.

“Remember,” said Reed, “that DOE has a well-defined process for standing up new scientific instruments, whether that be historically things like the Advanced Photon Source at Argonne or the Spallation Neutron Source at Oak Ridge, or the heavy ion accelerators. They have a well-defined process that includes work breakdown structures, reviews, and delivery checks. That is the part that is ECP. It is a march to an operational facility. It’s not just procurement because there is obviously some magic that has to take place before that in terms of the R&D but it is driven by a focus on establishing an operational facility. That is the same process they would use to stand up any other instrument the DOE operates.”

Asked for his personal take on the likelihood of the budget getting funded, Reed said he thinks that the President’s proposed budget aligns with what expectations were. “The budget is really a placeholder, given the election process,” he said. “There’s a high-probability there will be a continuing resolution rather than a approved budget, but having said that, I think it’s very likely that the new money will appear for DOE to move forward with exascale.”

When asked for comment, Tim Polk, assistant director of Cybersecurity with the White House Office of Science and Technology Policy (OSTP), highlighted the importance of exascale computing for the maintenance of US leadership over the coming decades. “The United States must make strategic investments in High-Performance Computing to meet increasing computing demands and emerging technological challenges,” he said, noting that with the proposed $285 million in exascale computing investment at DOE and an additional $33 million in NSCI-focused programs at NSF, combined with existing HPC streams, the BRAIN initiative and other activities, “the NSCI agencies are well-positioned to advance key technologies during FY17.”

This marker of progress toward a national exascale computing program also inspired Jack Dongarra, distinguished professor of computer science in the Electrical Engineering and Computer Science Department at the University of Tennessee, to share the following commentary:

This past summer’s announcement of President Obama’s National Strategic Computing Initiative (NSCI) should usher in a national environment for scientific research that will help the Innovative Computing Laboratory to continue to thrive. Aspiring to “… create systems that can apply exaflops of computing power to exabytes of data,” the NSCI proposes to establish a coordinated, long term, multiagency strategy for improving the nation’s economic competitiveness and research prowess by raising its high performance computing and data analysis capabilities to unprecedented heights.

I remember very well the last time—more than 15 years ago—when such an ambitious federal initiative was launched because it was my long time friend and collaborator, the late Ken Kennedy, who led the President’s Information Technology Advisory Committee (PITAC) that produced the Information Technology Research: Investing in Our Future report. If the NSCI generates, over time, the same kind of national research environment that Ken’s PITAC report did, then the future prospects for Computing will indeed be bright.

The reviewed budget documents did not mention a deadline for an exascale deployment, but we know that ECI’s goal is to deploy capable exascale computing systems by 2023.

The DOE budget request reflects a trend of heightened focus on exascale computing. The word “exascale” shows up 26 times — that’s 10 more than last year. Continued funding for exascale computing is an official program highlight, with the following commentary provided as a statement of justification:

Exascale Computing: Enables U.S. leadership in the next generation of high performance computing

Since the beginning of the digital era, the U.S. Federal government has made pivotal investments in the computer industry at critical times when market progress was stagnating. We are once again at a critical turning point in high performance computing (HPC) technology, with industry innovations in hardware and software architectures driving advances in computing performance, but where the performance of application codes is suffering because the technology advances are not optimized for memory intensive, floating point HPC use. Yet the importance of HPC simulations is increasing as the U.S. faces serious and urgent economic, environmental, and national security challenges based on dynamic changes in the energy and climate systems, as well as growing security threats. Providing tools for solving these and future problems requires exascale capabilities. Committed U.S. leadership toward exascale computing is a critical contributor to our competitiveness in science, national defense, and energy innovation as well as the commercial computing market.  Equally important, a robust domestic industry contributes to our nation’s security by helping avoid unacceptable cybersecurity and computer supply chain risks.   

Addressing this national challenge requires a significant investment by the Federal government involving strong leadership from the Department and close coordination with national laboratories, industry, and academia. The Exascale Computing crosscutting initiative is organized around four pillars: application development, software technology, hardware technology, and exascale systems. In FY 2017, DOE proposes to expand its efforts in the first three technical focus areas, and begin efforts in the fourth focus area in FY 2018.  

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This