Light-enabled Microprocessor Holds Promise for Faster Computers

By John Russell

February 23, 2016

Combining electronics and photonics on semiconductor microchips to speed data transmission isn’t a new idea – the potential for better performance and power reduction are enticing. However thorny manufacturing issues have so far limited widespread use of this approach. That could change soon according to a recent report in Nature[i] and would have have broad implications extending even to efforts to achieve exascale computing, say the authors.

In the paper – “Single-chip microprocessor that communicates directly using light” – researchers from UC Berkeley, University of Colorado, and MIT report fabricating an electronic–photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. Most significantly, they did it with standard CMOS manufacturing techniques.

Talking about the impact of the work, Miloš Popovic a co-author on the study from the University of Colorado told HPCwire, “This work is directly aimed at the energy problem in supercomputers.  It will enable reducing the communication energy by about an order of magnitude, and will make communication energy independent of distance of a link — up to 100’s of meters. So, it’s definitely part of the exascale computing story.”

The chip was fabricated using a commercial high-performance 45-nm complementary metal–oxide semiconductor (CMOS) silicon-on-insulator (SOI) process. The authors write: “No changes to the foundry process were necessary to accommodate photonics and all optical devices were designed to comply with the native process-manufacturing rules. This ‘zero-change’ integration enables high-performance transistors on the same chip as optics, reuse of all existing designs in the process, compatibility with electronics design tools, and manufacturing in an existing high-volume foundry.”

On-chip electro-optic transmitters and receivers enable both the microprocessor and the memory to communicate directly to off-chip components using light, without the need for separate chips or components to host the optical devices.

One advantage of light based communication, noted Popović, is that multiple parallel data streams encoded on different colors of light can be sent over one and the same medium – in this case, an optical wire waveguide on a chip, or an off-chip optical fiber of the same kind that as those that form the Internet backbone.

Close-up of light-enabled microprocessor showing optical circuits (left), memory (top) and 2 compute cores (right)
Close-up of light-enabled microprocessor showing optical circuits (left), memory (top) and 2 compute cores (right)

“Another advantage is that the infrared light that we use – and that also TV remotes use – has a physical wavelength shorter than 1 micron, about one hundredth of the thickness of a human hair,” he said. “This enables very dense packing of light communication ports on a chip, enabling huge total bandwidth.” The new chip has a bandwidth density of 300 gigabits per second per square millimeter, about 10 to 50 times greater than packaged electrical-only microprocessors currently on the market.

The big news is the relative ease of manufacture. “This “zero change” approach to integration enables complex electronic-photonic systems on chip to be designed today, in an advanced CMOS foundry. This means high yield, immediate transition to volume production, and the most advanced transistors of any photonic chip (and the largest number of them). These qualities should open up research into systems on chip in many applications including RF signal processing, radar/lidar applications, sensing and imaging, etc.

The authors note, “By showing that a microprocessor with photonic I/O is possible to build today, we’re illustrating the power of this approach.  Incidentally, while we expected photonic devices to not perform as well using this approach as using fabrication customized to photonics, it turns out that in a number of cases they perform better — leveraging the high resolution implant masks, controlled sub-100nm CMOS deep UV lithography, and rich set of material and mask levels available in CMOS.”

As described in the paper, the manufacturing process includes a crystalline-silicon layer that is patterned to form both the body of the electronic transistors and the core of the optical waveguides. A thin buried-oxide layer separates the crystalline-silicon layer from the silicon-handle wafer. Because the buried-oxide layer is <200 nm thick, light propagating in crystalline-silicon waveguides will evanescently leak into the silicon-handle wafer, resulting in high waveguide loss.

To control leakage, selective substrate removal was performed on the chips after electrical packaging to etch away the silicon handle under regions with optical devices. The silicon handle remains intact under the microprocessor and memory (which dissipate the most power) to allow a heat sink to be contacted, if necessary. The researchers report removal of substrate “has a negligible effect on the electronics and the processor is completely functional even with a fully removed substrate.” The full details are best gleaned from the paper itself.

Researchers built the photodetectors of Silicon-Germanium (SiGe), which is present in small amounts in advanced CMOS processing, and selected 1,180nm wavelength for the optical channels as silicon is transparent to that wavelength. No adverse effects were seen and propagation losses were 4.3 dB/cm. The electro-optic transmitter consists of an electro-optic modulator and its electronic driver. The modulator is a silicon micro-ring resonator with a diameter of 10 μm, coupled to a waveguide.

Electrical signals are encoded on light waves in this optical transmitter consisting of a spoked ring modulator, monitoring photodiode (left) and light access port (bottom), all built using the same manufacturing steps and alongside transistor circuits that control them (top)
Electrical signals are encoded on light waves in this optical transmitter consisting of a spoked ring modulator, monitoring photodiode (left) and light access port (bottom), all built using the same manufacturing steps and alongside transistor circuits that control them (top)

It was necessary to create a tuning mechanism report the authors: “As a resonant device, the modulator is highly sensitive to variations in the thickness of the crystalline-silicon layer within and across SOI wafers as well as to spatially and rapidly temporally varying thermal environments created by the electrical components on the chip. Both effects cause λ0 to deviate from the design value, necessitating tuning circuitry. We embedded a 400-Ω resistive microheater inside the ring to efficiently tune λ0 and added a monitoring photodetector weakly coupled to the modulator drop port. When light resonates in the modulator ring, a small fraction of it couples to and illuminates the photodetector.”

Sadasivan Shankar, a longtime senior Intel researcher in semiconductor manufacturing and currently a visiting lecturer in computational science and engineering at Harvard, called the work important. “As mentioned in the paper itself, this is the current strained transistor technology that has been available in the market. [Nevertheless] this is a significant milestone. An optical device for transmission to memory in principle can save energy and also increase the clock cycle,” said Shankar who was not associated with the work.

“The current paradigm in HPC is more moving towards taking computing to data. The integration of optics with electronics on the same chip could enable this without higher energy costs. However, it is not clear that the overall performance is competitive with the state­‐of­‐the-art 14 nm CMOS technology,” said Shankar.

Popovic noted the important next steps for the research include: “1) to demonstrate multi-wavelength (WDM) communication in a processor, and 2) to improve the photonic devices — both of which can be done — to really put to rest questions about the viability of the approach, and 3) to develop new system applications — that will in turn drive us to devise new device concepts within CMOS platforms.”

Challenges aside, the work is a significant step forward. Co-author Chen Sun of UC Berkley said, “At a high-level, our work could solve the interconnect problem of today’s chips inside computers; semiconductor technology has allowed us to do more and more compute on a chip, but has done little to help chips communicate with each other at a higher bandwidth. Furthermore, the amount of power chips spend on communicating with other chips is now >20% of the chip’s power budget.

“With this technology, we could improve chip communication bandwidth by more than an order of magnitude and at lower power. At a lower-level, we have demonstrated an alternative path towards making optical devices on microchips, one that could 100% rely on an existing microchip manufacturing process and be natively integrated with electronics. This is an alternative to how the field of silicon photonics makes devices today, which is typically with the development of a new manufacturing process which no ability to integrate transistors on-chip.”

[i] Single-chip microprocessor that communicates directly using light, Nature

528, 534–538 (24 December 2015) doi:10.1038/nature16454; http://www.nature.com/nature/journal/v528/n7583/full/nature16454.html

Top Photo: Glenn Asakawa
Second Photo: Milos Popovic
Third Photo: Mark Wade

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

5 Benefits Artificial Intelligence Brings to HPC

According to findings from Hyperion Research, simulation is primarily responsible for expanding the global HPC market from $2 billion in 1990 to a projected $38 billion in 2022. Read more…

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage and data management for AI, big data and HPC acceleration. I Read more…

By Doug Black

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This