Light-enabled Microprocessor Holds Promise for Faster Computers

By John Russell

February 23, 2016

Combining electronics and photonics on semiconductor microchips to speed data transmission isn’t a new idea – the potential for better performance and power reduction are enticing. However thorny manufacturing issues have so far limited widespread use of this approach. That could change soon according to a recent report in Nature[i] and would have have broad implications extending even to efforts to achieve exascale computing, say the authors.

In the paper – “Single-chip microprocessor that communicates directly using light” – researchers from UC Berkeley, University of Colorado, and MIT report fabricating an electronic–photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. Most significantly, they did it with standard CMOS manufacturing techniques.

Talking about the impact of the work, Miloš Popovic a co-author on the study from the University of Colorado told HPCwire, “This work is directly aimed at the energy problem in supercomputers.  It will enable reducing the communication energy by about an order of magnitude, and will make communication energy independent of distance of a link — up to 100’s of meters. So, it’s definitely part of the exascale computing story.”

The chip was fabricated using a commercial high-performance 45-nm complementary metal–oxide semiconductor (CMOS) silicon-on-insulator (SOI) process. The authors write: “No changes to the foundry process were necessary to accommodate photonics and all optical devices were designed to comply with the native process-manufacturing rules. This ‘zero-change’ integration enables high-performance transistors on the same chip as optics, reuse of all existing designs in the process, compatibility with electronics design tools, and manufacturing in an existing high-volume foundry.”

On-chip electro-optic transmitters and receivers enable both the microprocessor and the memory to communicate directly to off-chip components using light, without the need for separate chips or components to host the optical devices.

One advantage of light based communication, noted Popović, is that multiple parallel data streams encoded on different colors of light can be sent over one and the same medium – in this case, an optical wire waveguide on a chip, or an off-chip optical fiber of the same kind that as those that form the Internet backbone.

Close-up of light-enabled microprocessor showing optical circuits (left), memory (top) and 2 compute cores (right)
Close-up of light-enabled microprocessor showing optical circuits (left), memory (top) and 2 compute cores (right)

“Another advantage is that the infrared light that we use – and that also TV remotes use – has a physical wavelength shorter than 1 micron, about one hundredth of the thickness of a human hair,” he said. “This enables very dense packing of light communication ports on a chip, enabling huge total bandwidth.” The new chip has a bandwidth density of 300 gigabits per second per square millimeter, about 10 to 50 times greater than packaged electrical-only microprocessors currently on the market.

The big news is the relative ease of manufacture. “This “zero change” approach to integration enables complex electronic-photonic systems on chip to be designed today, in an advanced CMOS foundry. This means high yield, immediate transition to volume production, and the most advanced transistors of any photonic chip (and the largest number of them). These qualities should open up research into systems on chip in many applications including RF signal processing, radar/lidar applications, sensing and imaging, etc.

The authors note, “By showing that a microprocessor with photonic I/O is possible to build today, we’re illustrating the power of this approach.  Incidentally, while we expected photonic devices to not perform as well using this approach as using fabrication customized to photonics, it turns out that in a number of cases they perform better — leveraging the high resolution implant masks, controlled sub-100nm CMOS deep UV lithography, and rich set of material and mask levels available in CMOS.”

As described in the paper, the manufacturing process includes a crystalline-silicon layer that is patterned to form both the body of the electronic transistors and the core of the optical waveguides. A thin buried-oxide layer separates the crystalline-silicon layer from the silicon-handle wafer. Because the buried-oxide layer is <200 nm thick, light propagating in crystalline-silicon waveguides will evanescently leak into the silicon-handle wafer, resulting in high waveguide loss.

To control leakage, selective substrate removal was performed on the chips after electrical packaging to etch away the silicon handle under regions with optical devices. The silicon handle remains intact under the microprocessor and memory (which dissipate the most power) to allow a heat sink to be contacted, if necessary. The researchers report removal of substrate “has a negligible effect on the electronics and the processor is completely functional even with a fully removed substrate.” The full details are best gleaned from the paper itself.

Researchers built the photodetectors of Silicon-Germanium (SiGe), which is present in small amounts in advanced CMOS processing, and selected 1,180nm wavelength for the optical channels as silicon is transparent to that wavelength. No adverse effects were seen and propagation losses were 4.3 dB/cm. The electro-optic transmitter consists of an electro-optic modulator and its electronic driver. The modulator is a silicon micro-ring resonator with a diameter of 10 μm, coupled to a waveguide.

Electrical signals are encoded on light waves in this optical transmitter consisting of a spoked ring modulator, monitoring photodiode (left) and light access port (bottom), all built using the same manufacturing steps and alongside transistor circuits that control them (top)
Electrical signals are encoded on light waves in this optical transmitter consisting of a spoked ring modulator, monitoring photodiode (left) and light access port (bottom), all built using the same manufacturing steps and alongside transistor circuits that control them (top)

It was necessary to create a tuning mechanism report the authors: “As a resonant device, the modulator is highly sensitive to variations in the thickness of the crystalline-silicon layer within and across SOI wafers as well as to spatially and rapidly temporally varying thermal environments created by the electrical components on the chip. Both effects cause λ0 to deviate from the design value, necessitating tuning circuitry. We embedded a 400-Ω resistive microheater inside the ring to efficiently tune λ0 and added a monitoring photodetector weakly coupled to the modulator drop port. When light resonates in the modulator ring, a small fraction of it couples to and illuminates the photodetector.”

Sadasivan Shankar, a longtime senior Intel researcher in semiconductor manufacturing and currently a visiting lecturer in computational science and engineering at Harvard, called the work important. “As mentioned in the paper itself, this is the current strained transistor technology that has been available in the market. [Nevertheless] this is a significant milestone. An optical device for transmission to memory in principle can save energy and also increase the clock cycle,” said Shankar who was not associated with the work.

“The current paradigm in HPC is more moving towards taking computing to data. The integration of optics with electronics on the same chip could enable this without higher energy costs. However, it is not clear that the overall performance is competitive with the state­‐of­‐the-art 14 nm CMOS technology,” said Shankar.

Popovic noted the important next steps for the research include: “1) to demonstrate multi-wavelength (WDM) communication in a processor, and 2) to improve the photonic devices — both of which can be done — to really put to rest questions about the viability of the approach, and 3) to develop new system applications — that will in turn drive us to devise new device concepts within CMOS platforms.”

Challenges aside, the work is a significant step forward. Co-author Chen Sun of UC Berkley said, “At a high-level, our work could solve the interconnect problem of today’s chips inside computers; semiconductor technology has allowed us to do more and more compute on a chip, but has done little to help chips communicate with each other at a higher bandwidth. Furthermore, the amount of power chips spend on communicating with other chips is now >20% of the chip’s power budget.

“With this technology, we could improve chip communication bandwidth by more than an order of magnitude and at lower power. At a lower-level, we have demonstrated an alternative path towards making optical devices on microchips, one that could 100% rely on an existing microchip manufacturing process and be natively integrated with electronics. This is an alternative to how the field of silicon photonics makes devices today, which is typically with the development of a new manufacturing process which no ability to integrate transistors on-chip.”

[i] Single-chip microprocessor that communicates directly using light, Nature

528, 534–538 (24 December 2015) doi:10.1038/nature16454; http://www.nature.com/nature/journal/v528/n7583/full/nature16454.html

Top Photo: Glenn Asakawa
Second Photo: Milos Popovic
Third Photo: Mark Wade

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energetic effort,” IBM Research wrote in a blog post. “Therefor Read more…

By Oliver Peckham

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight Gary Patton, GlobalFoundries’ CTO and R&D SVP as well a Read more…

By Doug Black

Quantum Bits: Rigetti Debuts New Gates, D-Wave Cuts NEC Deal, AWS Jumps into the Quantum Pool

December 12, 2019

There’s been flurry of significant news in the quantum computing world. Yesterday, Rigetti introduced a new family of gates that reduces circuit depth required on some problems and D-Wave struck a deal with NEC to coll Read more…

By John Russell

How Formula 1 Used Cloud HPC to Build the Next Generation of Racing

December 12, 2019

Formula 1, Rob Smedley explained, is maybe the biggest racing spectacle in the world, with five hundred million fans tuning in for every race. Smedley, a chief engineer with Formula 1’s performance engineering and anal Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time. Read more…

By Aaron Dubrow

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight G Read more…

By Doug Black

Quantum Bits: Rigetti Debuts New Gates, D-Wave Cuts NEC Deal, AWS Jumps into the Quantum Pool

December 12, 2019

There’s been flurry of significant news in the quantum computing world. Yesterday, Rigetti introduced a new family of gates that reduces circuit depth require Read more…

By John Russell

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time. Read more…

By Aaron Dubrow

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
DDN
DDN
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

IBM Opens Quantum Computing Center; Announces 53-Qubit Machine

September 19, 2019

Gauging progress in quantum computing is a tricky thing. IBM yesterday announced the opening of the IBM Quantum Computing Center in New York, with five 20-qubit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This