EU Projects Unite on Heterogeneous ARM-based Exascale Prototype

By Tiffany Trader

February 24, 2016

A trio of partner projects based in Europe – Exanest, Exanode and Ecoscale – are working in close collaboration to develop the building blocks for an exascale architecture prototype that will, as they describe, put the power of ten million computers into a single supercomputer. The effort is unique in seeking to advance the ARM64 + FPGA architecture as a foundational “general-purpose” exascale platform.

Funded for three years as part of Europe’s Horizon2020 program, the partners are coordinating their efforts with the goal of building an early “straw man” prototype late this year that will consist of more than one-thousand energy-efficient ARM cores, reconfigurable logic, plus advanced storage, memory, cooling and packaging technologies.

Exanest is the project partner that is focused on the system level, including interconnection, storage, packaging and cooling. And as the name implies, Exanode is responsible for the compute node and the memory of that compute node. Ecoscale focuses on employing and managing reconfigurable logic as accelerators within the system.

Exanest

Manolis Katevenis, the project coordinator for Exanest and head of computer architecture at FORTH-ICS in Greece, explains that Exanest has set an early target of 2016 to build this “relatively-large” first prototype, comprised of at least one-thousand ARM cores.

He says, “We are starting early with a prototype based on existing technology because we want system software to be developed and applications to start being ported and tuned. For the remainder of the two years, there will be ongoing software development, plus research on interconnects, storage and cooling technologies. We also believe that there will be new interesting compute nodes coming out from our partner projects and we will use such nodes.”

In discussing target workloads, Katevenis emphasizes flexibility and breadth, echoing the sentiments we are hearing from across the HPC community. The goal for this platform is to be able to support a range of applications, both on the traditional compute and physics side and the data-intensive side. A look at the Exanest partner list hints at the kind of high-performance applications that will be supported: astrophysics, nuclear physics, simulation-based engineering, and even in-memory databases with partner MonetDB Solutions. Allinea will be providing the ARMv8 profiling and debugging tools.

Although the projects are still in the specification phase, they will be making selections with the aim of overcoming the specific challenges related to exascale. Areas of focus include compact packaging, permanent storage, interconnection, resilience and application behavior. Some of the design decisions were revealed in this poster from Exanest that shows a diagram of the daughterboard and blade design. Note that Xilinx is a key partner.

Exanest daughterboard and blade design

To achieve a complete prototype capable of running real-world benchmarks and applications by 2018, the primary partners are collaborating with a number of other academic groups and industry partners using co-design principles to develop the hardware and software elements. This is a classic public-private arrangement where academic and industrial partners join forces and industrial partners benefit by being able to reuse the technology that is developed.

On the technology side, packaging and cooling is a key focus for Exanest, which will rely on Iceotope, the immersive cooling vendor, to design an innovative cooling environment. The first prototype will employ Iceotope technology and there is the expectation that technology with even higher power density will be developed as the project progresses.

One of the primary criteria for the project partners is low-energy consumption for the main processor. They have chosen 64-bit ARM processors as their main compute engine. Katevenis affirms that having a processor that consumes dramatically less power allows many more cores to be packaged in the same physical volume and within the same total power consumption budget. “One way we will achieve scale is this low-power consumption,” says the project lead, “but another is by having accelerators to provide floating point performance boost to appropriate applications.”

As for topology, the Exanest team is discussing the family of networks that includes fat trees and Dragonfly topology. They will be linking blades through optical fibers that they can plug and unplug allowing them to experiment with more than one topology. Exanest will also be using FPGAs for building the interconnection network so they can experiment with novel protocols.

Exanode

Denis Dutoit, the project coordinator for Exanode, tells HPCwire the goal of that project is to build a node-level prototype with technologies that exhibit exascale potential. The three building blocks are heterogeneous compute elements (ARM-v8 low-power processors plus various accelerators, namely FPGAs although ASICs and GPGPUs may also be explored); 3D interposer integration for compute density; and, continuing the efforts of the EUROSERVER project, an advanced memory scheme for low-latency, high-bandwidth memory access, scalable to exabyte levels.

ExaNoDe_Figures_04-1024x768

Dutoit, who is the strategic marketing manager, architecture, IC design and embedded software division at CEA-Leti, notes that this is a technology driven project at the start, but on top of this prototype, there will be a complete software stack for HPC capability. Evaluation will be done first will be done on the node level, explains Dutoit. They will utilize emulated hardware first and representative HPC applications to evaluate at the level nodes, but after that, Exanest will reuse these compute nodes and integrate them into their complete machine to do the full testing and evaluation with real applications.

There will be a formal effort to productize the resulting technology through a partnership with Kaleao, a UK company that focuses on energy-efficient, compact hyperconverged platforms.

Ecoscale

Iakovos Mavroidis, project coordinator for Ecoscale, says that while there are three main projects, he sees it as one big project with Ecoscale dedicated to reconfigurable computing.

A member of Computer Architecture and VLSI Systems (CARV) Laboratory of FORTH-ICS and a member of Telecommunication Systems Institute, Mavroidis notes that the main problem being addressed is how to improve today’s HPC servers. Simple scaling without improving technologies is unfeasible due to utility costs and power consumption limitations. Ecoscale is tackling these challenges by proposing a scale-out hybrid MPI+OpenCL programming environment and a runtime system, along with a hardware architecture which is tailored to the needs of HPC applications. The programming model and runtime system follows a hierarchical approach where the system is partitioned into multiple autonomous workers (i.e. compute nodes).

ecoscale_framework

“The main focus of Ecoscale is to support shared partitioned reconfigurable resources, accessed by these compute nodes,” says Mavroidis. “The intention is to have a global notion of the reconfigurable resources so that each compute node can access remote reconfigurable resources not only its own local resources. The logic can also be shared by several compute nodes working in parallel.” To accomplish this, workers are interconnected in a tree-like structure in order to form larger Partitioned Global Address Space (PGAS) partitions, which are further hierarchically interconnected via an MPI protocol.

“The virtualization will happen automatically in hardware and it has to be done because reconfigurable resources are very limited unless remote access is enabled,” states Mavroidis. “The aim is to provide a user-friendly way for the programmer to use all the reconfigurable logic in the system. This requires a very high-speed low-latency interconnection topology and this is what Exanest will provide.”

Mavroidis explains there must be means for the programmer to access the system and at a higher-level the run-time system has to be redefined to understand the needs of the application so it can reconfigure the machine. He believes that in order to fully implement this, there will need to be innovation in all the layers of the stack, and also the programming model itself will also need to be redefined. The partners are aiming to support most of the existing and common HPC libraries in order to make this architecture available to most of the existing applications.

The main focus of Ecoscale is to automate out the complexity of FPGA programming. Anyone who has watched FPGAs struggle to get a foothold in HPC knows this is not an easy task, but the need for low-power performance is driving interest and innovation. “The programmer should not have to be aware that the machine uses reconfigurable computing, but rather be able to write the program using high-level programming model such as MPI or Standard C,” states Mavroidis.

On a related note, Exanest project partner BeeGFS has just announced that the BeeGFS parallel file system is now available as open source from www.beegfs.com. “Although BeeGFS can already run out of the box on ARM systems today, this project [Exanest] will give us the opportunity to make sure that we can deliver the maximum performance on this architecture as well,” shares Bernd Lietzow, BeeGFS head for Exanest.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This