EU Projects Unite on Heterogeneous ARM-based Exascale Prototype

By Tiffany Trader

February 24, 2016

A trio of partner projects based in Europe – Exanest, Exanode and Ecoscale – are working in close collaboration to develop the building blocks for an exascale architecture prototype that will, as they describe, put the power of ten million computers into a single supercomputer. The effort is unique in seeking to advance the ARM64 + FPGA architecture as a foundational “general-purpose” exascale platform.

Funded for three years as part of Europe’s Horizon2020 program, the partners are coordinating their efforts with the goal of building an early “straw man” prototype late this year that will consist of more than one-thousand energy-efficient ARM cores, reconfigurable logic, plus advanced storage, memory, cooling and packaging technologies.

Exanest is the project partner that is focused on the system level, including interconnection, storage, packaging and cooling. And as the name implies, Exanode is responsible for the compute node and the memory of that compute node. Ecoscale focuses on employing and managing reconfigurable logic as accelerators within the system.

Exanest

Manolis Katevenis, the project coordinator for Exanest and head of computer architecture at FORTH-ICS in Greece, explains that Exanest has set an early target of 2016 to build this “relatively-large” first prototype, comprised of at least one-thousand ARM cores.

He says, “We are starting early with a prototype based on existing technology because we want system software to be developed and applications to start being ported and tuned. For the remainder of the two years, there will be ongoing software development, plus research on interconnects, storage and cooling technologies. We also believe that there will be new interesting compute nodes coming out from our partner projects and we will use such nodes.”

In discussing target workloads, Katevenis emphasizes flexibility and breadth, echoing the sentiments we are hearing from across the HPC community. The goal for this platform is to be able to support a range of applications, both on the traditional compute and physics side and the data-intensive side. A look at the Exanest partner list hints at the kind of high-performance applications that will be supported: astrophysics, nuclear physics, simulation-based engineering, and even in-memory databases with partner MonetDB Solutions. Allinea will be providing the ARMv8 profiling and debugging tools.

Although the projects are still in the specification phase, they will be making selections with the aim of overcoming the specific challenges related to exascale. Areas of focus include compact packaging, permanent storage, interconnection, resilience and application behavior. Some of the design decisions were revealed in this poster from Exanest that shows a diagram of the daughterboard and blade design. Note that Xilinx is a key partner.

Exanest daughterboard and blade design

To achieve a complete prototype capable of running real-world benchmarks and applications by 2018, the primary partners are collaborating with a number of other academic groups and industry partners using co-design principles to develop the hardware and software elements. This is a classic public-private arrangement where academic and industrial partners join forces and industrial partners benefit by being able to reuse the technology that is developed.

On the technology side, packaging and cooling is a key focus for Exanest, which will rely on Iceotope, the immersive cooling vendor, to design an innovative cooling environment. The first prototype will employ Iceotope technology and there is the expectation that technology with even higher power density will be developed as the project progresses.

One of the primary criteria for the project partners is low-energy consumption for the main processor. They have chosen 64-bit ARM processors as their main compute engine. Katevenis affirms that having a processor that consumes dramatically less power allows many more cores to be packaged in the same physical volume and within the same total power consumption budget. “One way we will achieve scale is this low-power consumption,” says the project lead, “but another is by having accelerators to provide floating point performance boost to appropriate applications.”

As for topology, the Exanest team is discussing the family of networks that includes fat trees and Dragonfly topology. They will be linking blades through optical fibers that they can plug and unplug allowing them to experiment with more than one topology. Exanest will also be using FPGAs for building the interconnection network so they can experiment with novel protocols.

Exanode

Denis Dutoit, the project coordinator for Exanode, tells HPCwire the goal of that project is to build a node-level prototype with technologies that exhibit exascale potential. The three building blocks are heterogeneous compute elements (ARM-v8 low-power processors plus various accelerators, namely FPGAs although ASICs and GPGPUs may also be explored); 3D interposer integration for compute density; and, continuing the efforts of the EUROSERVER project, an advanced memory scheme for low-latency, high-bandwidth memory access, scalable to exabyte levels.

ExaNoDe_Figures_04-1024x768

Dutoit, who is the strategic marketing manager, architecture, IC design and embedded software division at CEA-Leti, notes that this is a technology driven project at the start, but on top of this prototype, there will be a complete software stack for HPC capability. Evaluation will be done first will be done on the node level, explains Dutoit. They will utilize emulated hardware first and representative HPC applications to evaluate at the level nodes, but after that, Exanest will reuse these compute nodes and integrate them into their complete machine to do the full testing and evaluation with real applications.

There will be a formal effort to productize the resulting technology through a partnership with Kaleao, a UK company that focuses on energy-efficient, compact hyperconverged platforms.

Ecoscale

Iakovos Mavroidis, project coordinator for Ecoscale, says that while there are three main projects, he sees it as one big project with Ecoscale dedicated to reconfigurable computing.

A member of Computer Architecture and VLSI Systems (CARV) Laboratory of FORTH-ICS and a member of Telecommunication Systems Institute, Mavroidis notes that the main problem being addressed is how to improve today’s HPC servers. Simple scaling without improving technologies is unfeasible due to utility costs and power consumption limitations. Ecoscale is tackling these challenges by proposing a scale-out hybrid MPI+OpenCL programming environment and a runtime system, along with a hardware architecture which is tailored to the needs of HPC applications. The programming model and runtime system follows a hierarchical approach where the system is partitioned into multiple autonomous workers (i.e. compute nodes).

ecoscale_framework

“The main focus of Ecoscale is to support shared partitioned reconfigurable resources, accessed by these compute nodes,” says Mavroidis. “The intention is to have a global notion of the reconfigurable resources so that each compute node can access remote reconfigurable resources not only its own local resources. The logic can also be shared by several compute nodes working in parallel.” To accomplish this, workers are interconnected in a tree-like structure in order to form larger Partitioned Global Address Space (PGAS) partitions, which are further hierarchically interconnected via an MPI protocol.

“The virtualization will happen automatically in hardware and it has to be done because reconfigurable resources are very limited unless remote access is enabled,” states Mavroidis. “The aim is to provide a user-friendly way for the programmer to use all the reconfigurable logic in the system. This requires a very high-speed low-latency interconnection topology and this is what Exanest will provide.”

Mavroidis explains there must be means for the programmer to access the system and at a higher-level the run-time system has to be redefined to understand the needs of the application so it can reconfigure the machine. He believes that in order to fully implement this, there will need to be innovation in all the layers of the stack, and also the programming model itself will also need to be redefined. The partners are aiming to support most of the existing and common HPC libraries in order to make this architecture available to most of the existing applications.

The main focus of Ecoscale is to automate out the complexity of FPGA programming. Anyone who has watched FPGAs struggle to get a foothold in HPC knows this is not an easy task, but the need for low-power performance is driving interest and innovation. “The programmer should not have to be aware that the machine uses reconfigurable computing, but rather be able to write the program using high-level programming model such as MPI or Standard C,” states Mavroidis.

On a related note, Exanest project partner BeeGFS has just announced that the BeeGFS parallel file system is now available as open source from www.beegfs.com. “Although BeeGFS can already run out of the box on ARM systems today, this project [Exanest] will give us the opportunity to make sure that we can deliver the maximum performance on this architecture as well,” shares Bernd Lietzow, BeeGFS head for Exanest.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced computing technologies for the AI and exascale era. "Over th Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has now encompassed CPUs offered by the leading public cloud serv Read more…

By Doug Black

Medical Imaging Gets an AI Boost

December 3, 2019

AI technologies incorporated into diagnostic imaging tools have proven useful in eliminating confirmation bias, often outperforming human clinicians who may bring their own prejudices. Another issue slowing progress is t Read more…

By George Leopold

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science itself. At SC19, Steve Squyres’ opening keynote recounting th Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

AI Needs Intelligent HPC infrastructure

Artificial Intelligence (AI) has revolutionized entire industries and enables humanity to solve some of the most daunting challenges. To accomplish this, it requires massive amounts of data from heterogeneous sources that is processed it new ways that differs significantly from HPC applications. Read more…

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

How the Gordon Bell Prize Winners Used Summit to Illuminate Transistors

November 22, 2019

At SC19, the Association for Computing Machinery (ACM) awarded the prestigious Gordon Bell Prize to the Swiss Federal Institute of Technology (ETH) Zurich. The Read more…

By Oliver Peckham

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This