EU Projects Unite on Heterogeneous ARM-based Exascale Prototype

By Tiffany Trader

February 24, 2016

A trio of partner projects based in Europe – Exanest, Exanode and Ecoscale – are working in close collaboration to develop the building blocks for an exascale architecture prototype that will, as they describe, put the power of ten million computers into a single supercomputer. The effort is unique in seeking to advance the ARM64 + FPGA architecture as a foundational “general-purpose” exascale platform.

Funded for three years as part of Europe’s Horizon2020 program, the partners are coordinating their efforts with the goal of building an early “straw man” prototype late this year that will consist of more than one-thousand energy-efficient ARM cores, reconfigurable logic, plus advanced storage, memory, cooling and packaging technologies.

Exanest is the project partner that is focused on the system level, including interconnection, storage, packaging and cooling. And as the name implies, Exanode is responsible for the compute node and the memory of that compute node. Ecoscale focuses on employing and managing reconfigurable logic as accelerators within the system.

Exanest

Manolis Katevenis, the project coordinator for Exanest and head of computer architecture at FORTH-ICS in Greece, explains that Exanest has set an early target of 2016 to build this “relatively-large” first prototype, comprised of at least one-thousand ARM cores.

He says, “We are starting early with a prototype based on existing technology because we want system software to be developed and applications to start being ported and tuned. For the remainder of the two years, there will be ongoing software development, plus research on interconnects, storage and cooling technologies. We also believe that there will be new interesting compute nodes coming out from our partner projects and we will use such nodes.”

In discussing target workloads, Katevenis emphasizes flexibility and breadth, echoing the sentiments we are hearing from across the HPC community. The goal for this platform is to be able to support a range of applications, both on the traditional compute and physics side and the data-intensive side. A look at the Exanest partner list hints at the kind of high-performance applications that will be supported: astrophysics, nuclear physics, simulation-based engineering, and even in-memory databases with partner MonetDB Solutions. Allinea will be providing the ARMv8 profiling and debugging tools.

Although the projects are still in the specification phase, they will be making selections with the aim of overcoming the specific challenges related to exascale. Areas of focus include compact packaging, permanent storage, interconnection, resilience and application behavior. Some of the design decisions were revealed in this poster from Exanest that shows a diagram of the daughterboard and blade design. Note that Xilinx is a key partner.

Exanest daughterboard and blade design

To achieve a complete prototype capable of running real-world benchmarks and applications by 2018, the primary partners are collaborating with a number of other academic groups and industry partners using co-design principles to develop the hardware and software elements. This is a classic public-private arrangement where academic and industrial partners join forces and industrial partners benefit by being able to reuse the technology that is developed.

On the technology side, packaging and cooling is a key focus for Exanest, which will rely on Iceotope, the immersive cooling vendor, to design an innovative cooling environment. The first prototype will employ Iceotope technology and there is the expectation that technology with even higher power density will be developed as the project progresses.

One of the primary criteria for the project partners is low-energy consumption for the main processor. They have chosen 64-bit ARM processors as their main compute engine. Katevenis affirms that having a processor that consumes dramatically less power allows many more cores to be packaged in the same physical volume and within the same total power consumption budget. “One way we will achieve scale is this low-power consumption,” says the project lead, “but another is by having accelerators to provide floating point performance boost to appropriate applications.”

As for topology, the Exanest team is discussing the family of networks that includes fat trees and Dragonfly topology. They will be linking blades through optical fibers that they can plug and unplug allowing them to experiment with more than one topology. Exanest will also be using FPGAs for building the interconnection network so they can experiment with novel protocols.

Exanode

Denis Dutoit, the project coordinator for Exanode, tells HPCwire the goal of that project is to build a node-level prototype with technologies that exhibit exascale potential. The three building blocks are heterogeneous compute elements (ARM-v8 low-power processors plus various accelerators, namely FPGAs although ASICs and GPGPUs may also be explored); 3D interposer integration for compute density; and, continuing the efforts of the EUROSERVER project, an advanced memory scheme for low-latency, high-bandwidth memory access, scalable to exabyte levels.

ExaNoDe_Figures_04-1024x768

Dutoit, who is the strategic marketing manager, architecture, IC design and embedded software division at CEA-Leti, notes that this is a technology driven project at the start, but on top of this prototype, there will be a complete software stack for HPC capability. Evaluation will be done first will be done on the node level, explains Dutoit. They will utilize emulated hardware first and representative HPC applications to evaluate at the level nodes, but after that, Exanest will reuse these compute nodes and integrate them into their complete machine to do the full testing and evaluation with real applications.

There will be a formal effort to productize the resulting technology through a partnership with Kaleao, a UK company that focuses on energy-efficient, compact hyperconverged platforms.

Ecoscale

Iakovos Mavroidis, project coordinator for Ecoscale, says that while there are three main projects, he sees it as one big project with Ecoscale dedicated to reconfigurable computing.

A member of Computer Architecture and VLSI Systems (CARV) Laboratory of FORTH-ICS and a member of Telecommunication Systems Institute, Mavroidis notes that the main problem being addressed is how to improve today’s HPC servers. Simple scaling without improving technologies is unfeasible due to utility costs and power consumption limitations. Ecoscale is tackling these challenges by proposing a scale-out hybrid MPI+OpenCL programming environment and a runtime system, along with a hardware architecture which is tailored to the needs of HPC applications. The programming model and runtime system follows a hierarchical approach where the system is partitioned into multiple autonomous workers (i.e. compute nodes).

ecoscale_framework

“The main focus of Ecoscale is to support shared partitioned reconfigurable resources, accessed by these compute nodes,” says Mavroidis. “The intention is to have a global notion of the reconfigurable resources so that each compute node can access remote reconfigurable resources not only its own local resources. The logic can also be shared by several compute nodes working in parallel.” To accomplish this, workers are interconnected in a tree-like structure in order to form larger Partitioned Global Address Space (PGAS) partitions, which are further hierarchically interconnected via an MPI protocol.

“The virtualization will happen automatically in hardware and it has to be done because reconfigurable resources are very limited unless remote access is enabled,” states Mavroidis. “The aim is to provide a user-friendly way for the programmer to use all the reconfigurable logic in the system. This requires a very high-speed low-latency interconnection topology and this is what Exanest will provide.”

Mavroidis explains there must be means for the programmer to access the system and at a higher-level the run-time system has to be redefined to understand the needs of the application so it can reconfigure the machine. He believes that in order to fully implement this, there will need to be innovation in all the layers of the stack, and also the programming model itself will also need to be redefined. The partners are aiming to support most of the existing and common HPC libraries in order to make this architecture available to most of the existing applications.

The main focus of Ecoscale is to automate out the complexity of FPGA programming. Anyone who has watched FPGAs struggle to get a foothold in HPC knows this is not an easy task, but the need for low-power performance is driving interest and innovation. “The programmer should not have to be aware that the machine uses reconfigurable computing, but rather be able to write the program using high-level programming model such as MPI or Standard C,” states Mavroidis.

On a related note, Exanest project partner BeeGFS has just announced that the BeeGFS parallel file system is now available as open source from www.beegfs.com. “Although BeeGFS can already run out of the box on ARM systems today, this project [Exanest] will give us the opportunity to make sure that we can deliver the maximum performance on this architecture as well,” shares Bernd Lietzow, BeeGFS head for Exanest.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This