‘Biomolecular Motor-based’ Computer Promises Speed and Reduced Power

By John Russell

March 2, 2016

Combinatorial tasks are among the hardest for traditional computers. A good example is finding the optimum path through a large complicated network. Every possible path must be evaluated and as datasets grow the computing time grows exponentially making some tasks unfeasible. One practical example is verification of VLSI (very large scale integrated) semiconductor circuit design. Indeed, many VLSI circuit designs are never ‘fully verified’ because the combinatorial calculation is prohibitively time-consuming and instead rely on approximations.

Last week, a group of international researchers brought a new approach to the combinatorial problem processing challenge, which they say is the world’s first “biomolecular motor-based” parallel computer. Not only does it solve combinatorial problems much faster but also with orders of magnitude less power consumption than comparable electronic computers, they report.

“Electronic computers are extremely powerful at performing a high number of operations at very high speeds, sequentially. However, they struggle with combinatorial tasks that can be solved faster if many operations are performed in parallel. Here, we present proof-of-concept of a parallel computer by solving the specific instance {2, 5, 9} of a classical nondeterministic-polynomial-time complete (“NP-complete”) problem, the subset sum problem,” write the authors in their paper, “Parallel computation with molecular-motor-propelled agents in nanofabricated networks”[i], published in PNAS last week.

So what is a biomolecular motor-based parallel computer?

Microtubules at a junction
Microtubules at a junction

The researchers take components of a typical cell – tiny microtubule filaments that are normally part of a cell’s cytoskeleton and motor proteins that do the pushing and pulling – and enter them into a network of microchannels whose geometry is a ‘computing’ machine. As the microtubules flow through the network, they are directed by ‘gates’, which perform a kind of addition. (see diagram on the side).

Conceptually, the approach involves, “[E]ncoding combinatorial problems into the geometry of a physical network of lithographically defined channels, followed by exploration of the network in a parallel fashion using a large number of independent agents, with very high energy efficiency….Our approach replaces the requirement for exponentially growing time needed by traditional, electronic computers to solve NP-complete problems, with the requirement for an exponentially growing number of independent computing agents [microtubules].”

The new work is from researchers whose various affiliations include UC Berkeley, Lund University, Technische Universitat, Max Planck Institute, Linneaus University, McGill University, and the University of Liverpool (authors listed at end of article). Their proof of concept work, spelled out in more detail below, could have major impact on efforts to solve many combinatorial tasks besides circuit design verification, such as protein folding an design, and optimal network routing.

“Our approach has the potential to be general and to be developed further to enable the efficient encoding and solving of a wide range of large-scale problems. Accomplishing this would move forward (but not remove) the limit of the size of combinatorial problems that can be solved,” contend the authors.

There have been many efforts to develop and apply novel computing architectures to the combinatorial calculation problem. DNA computing and quantum computing come to mind. The authors note most of the new approaches have significant drawbacks:

  • DNA computation, which generates mathematical solutions by recombining DNA strands, or DNA static or dynamic nanostructures, is limited by the need for impractically large amounts of DNA.
  • Quantum computation is limited in scale by decoherence and by the small number of qubits that can be integrated.
  • Microfluidics-based parallel computation is difficult to scale up in practice due to rapidly diverging physical size and complexity of the computation devices with the size of the problem, as well as the need for impractically large external pressure.

The bio-molecular motor method, argue the authors, overcomes most challenges and has many benefits not least much improved heat dissipation characteristics, “the approach demonstrated here consumes orders of magnitude less energy per operation compared with both electronic and microfluidic computers.”

Here is a bit more detail on how the computation is done. The channel-guided unidirectional motions of agents are equivalent to elementary operations of addition, and their spatial positions in the network are equivalent to ‘running sums.’ Starting from an entrance point at one corner of the network agents are guided downward by the channels in vertical or diagonal directions.

Encoding of the combinatorial Subset Sum Problem into a lithographically defined network of nanoscale channels – green numbers label the problem’s solutions at the network’s exits.
Encoding of the combinatorial Subset Sum Problem into a lithographically defined network of nanoscale channels – green numbers label the problem’s solutions at the network’s exits.

Two types of junctions were designed to regulate the motion of agents in the network: “split junctions,” where agents are randomly distributed between two forward paths, and “pass junctions,” where agents are guided onward to the next junction along the initial direction. The vertical distance (measured as the number of junctions) between two subsequent rows of split junctions represents an integer from the set S.”

After traversing the network, the filaments emerge at exits corresponding to the target sums and are either recycled back to the entrance point or collected. The channel networks were fabricated by electron-beam lithography on SiO2 substrates to obtain the required resolution and fidelity.

Minimizing computation errors is also an important component; the error rates of microtubules flow at pass junctions must be kept as low as possible. In the proof-of-concept experiment, the results were promising. Statistical analysis of the motion of actin filaments and the microtubules showed that 97.9% and 99.7%, respectively, took the correct (straight) paths through pass junctions, whereas split junctions distributed filaments approximately evenly experimental data are in good agreement with those obtained by Monte Carlo simulations.

The details of the process are best taken directly from the paper, which has multiple figures.

There are certainly challenges beyond the reported POC work to make biomolecular motor-based computing practical. The authors note six:

  1. Scaling up of the physical network size from currently “100 × 100 μm2 to wafer size, which is achievable by current patterning technology.
  2. Reduction of the filament feeding time, which can be achieved by using networks with multiple entrances, or by self-replicating filaments.
  3. Reduction of pass-junction error rates, which can be realized by simulation-driven design by evolutionary algorithms for designing the junction geometries or by using 3D geometries such as bridges or tunnels which would offer zero error rates at pass junctions.
  4. To circumvent the inherent difficulties of tracking large numbers of individual filaments, automatic readout schemes at exits of interest will likely be required.
  5. Programmable devices which can flexibly encode different problems could be achieved by using heat-controlled or electrostatic gates in only one programmable type of junction instead of the two (isomorphic) static junctions.
  6. Filaments can be prevented from attaching to or detaching from the network by using closed channels with porous openings for allowing the supply of ATP.

[i] Parallel computation with molecular-motor-propelled agents in nanofabricated networks, Proceeding of the National Academy of Science; Dan V. Nicolau Jr., Mercy Lard, Till Kortend, Falco C. M. J. M. van Delftf, Malin Perssong, Elina Bengtssong, Alf Månssong, Stefan Diezd,e, Heiner Linkec, and Dan V. Nicolau; http://www.pnas.org/content/early/2016/02/17/1510825113.abstract

Image Credits: Till Korten, B CUBE; Mercy Lard, Lund University; Falco van Delft, Philips Research

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Students Gird for Cluster Mayhem at ASC19

April 23, 2019

Final cluster configurations have been set, and competitors in the ASC19 Student Supercomputer Challenge have started running the various AI models and HPC benchmarks that will determine who is declared champion. But if Read more…

By Alex Woodie

Student Cluster Season Opener: ASC19

April 22, 2019

Calling all computer sports fans! Now hear this:  The 2019 Student Cluster Competition season is officially underway with the beginning of the ASC19 event on Tuesday, April 22nd. For you millions of student cluster c Read more…

By Dan Stark

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This