‘Biomolecular Motor-based’ Computer Promises Speed and Reduced Power

By John Russell

March 2, 2016

Combinatorial tasks are among the hardest for traditional computers. A good example is finding the optimum path through a large complicated network. Every possible path must be evaluated and as datasets grow the computing time grows exponentially making some tasks unfeasible. One practical example is verification of VLSI (very large scale integrated) semiconductor circuit design. Indeed, many VLSI circuit designs are never ‘fully verified’ because the combinatorial calculation is prohibitively time-consuming and instead rely on approximations.

Last week, a group of international researchers brought a new approach to the combinatorial problem processing challenge, which they say is the world’s first “biomolecular motor-based” parallel computer. Not only does it solve combinatorial problems much faster but also with orders of magnitude less power consumption than comparable electronic computers, they report.

“Electronic computers are extremely powerful at performing a high number of operations at very high speeds, sequentially. However, they struggle with combinatorial tasks that can be solved faster if many operations are performed in parallel. Here, we present proof-of-concept of a parallel computer by solving the specific instance {2, 5, 9} of a classical nondeterministic-polynomial-time complete (“NP-complete”) problem, the subset sum problem,” write the authors in their paper, “Parallel computation with molecular-motor-propelled agents in nanofabricated networks”[i], published in PNAS last week.

So what is a biomolecular motor-based parallel computer?

Microtubules at a junction
Microtubules at a junction

The researchers take components of a typical cell – tiny microtubule filaments that are normally part of a cell’s cytoskeleton and motor proteins that do the pushing and pulling – and enter them into a network of microchannels whose geometry is a ‘computing’ machine. As the microtubules flow through the network, they are directed by ‘gates’, which perform a kind of addition. (see diagram on the side).

Conceptually, the approach involves, “[E]ncoding combinatorial problems into the geometry of a physical network of lithographically defined channels, followed by exploration of the network in a parallel fashion using a large number of independent agents, with very high energy efficiency….Our approach replaces the requirement for exponentially growing time needed by traditional, electronic computers to solve NP-complete problems, with the requirement for an exponentially growing number of independent computing agents [microtubules].”

The new work is from researchers whose various affiliations include UC Berkeley, Lund University, Technische Universitat, Max Planck Institute, Linneaus University, McGill University, and the University of Liverpool (authors listed at end of article). Their proof of concept work, spelled out in more detail below, could have major impact on efforts to solve many combinatorial tasks besides circuit design verification, such as protein folding an design, and optimal network routing.

“Our approach has the potential to be general and to be developed further to enable the efficient encoding and solving of a wide range of large-scale problems. Accomplishing this would move forward (but not remove) the limit of the size of combinatorial problems that can be solved,” contend the authors.

There have been many efforts to develop and apply novel computing architectures to the combinatorial calculation problem. DNA computing and quantum computing come to mind. The authors note most of the new approaches have significant drawbacks:

  • DNA computation, which generates mathematical solutions by recombining DNA strands, or DNA static or dynamic nanostructures, is limited by the need for impractically large amounts of DNA.
  • Quantum computation is limited in scale by decoherence and by the small number of qubits that can be integrated.
  • Microfluidics-based parallel computation is difficult to scale up in practice due to rapidly diverging physical size and complexity of the computation devices with the size of the problem, as well as the need for impractically large external pressure.

The bio-molecular motor method, argue the authors, overcomes most challenges and has many benefits not least much improved heat dissipation characteristics, “the approach demonstrated here consumes orders of magnitude less energy per operation compared with both electronic and microfluidic computers.”

Here is a bit more detail on how the computation is done. The channel-guided unidirectional motions of agents are equivalent to elementary operations of addition, and their spatial positions in the network are equivalent to ‘running sums.’ Starting from an entrance point at one corner of the network agents are guided downward by the channels in vertical or diagonal directions.

Encoding of the combinatorial Subset Sum Problem into a lithographically defined network of nanoscale channels – green numbers label the problem’s solutions at the network’s exits.
Encoding of the combinatorial Subset Sum Problem into a lithographically defined network of nanoscale channels – green numbers label the problem’s solutions at the network’s exits.

Two types of junctions were designed to regulate the motion of agents in the network: “split junctions,” where agents are randomly distributed between two forward paths, and “pass junctions,” where agents are guided onward to the next junction along the initial direction. The vertical distance (measured as the number of junctions) between two subsequent rows of split junctions represents an integer from the set S.”

After traversing the network, the filaments emerge at exits corresponding to the target sums and are either recycled back to the entrance point or collected. The channel networks were fabricated by electron-beam lithography on SiO2 substrates to obtain the required resolution and fidelity.

Minimizing computation errors is also an important component; the error rates of microtubules flow at pass junctions must be kept as low as possible. In the proof-of-concept experiment, the results were promising. Statistical analysis of the motion of actin filaments and the microtubules showed that 97.9% and 99.7%, respectively, took the correct (straight) paths through pass junctions, whereas split junctions distributed filaments approximately evenly experimental data are in good agreement with those obtained by Monte Carlo simulations.

The details of the process are best taken directly from the paper, which has multiple figures.

There are certainly challenges beyond the reported POC work to make biomolecular motor-based computing practical. The authors note six:

  1. Scaling up of the physical network size from currently “100 × 100 μm2 to wafer size, which is achievable by current patterning technology.
  2. Reduction of the filament feeding time, which can be achieved by using networks with multiple entrances, or by self-replicating filaments.
  3. Reduction of pass-junction error rates, which can be realized by simulation-driven design by evolutionary algorithms for designing the junction geometries or by using 3D geometries such as bridges or tunnels which would offer zero error rates at pass junctions.
  4. To circumvent the inherent difficulties of tracking large numbers of individual filaments, automatic readout schemes at exits of interest will likely be required.
  5. Programmable devices which can flexibly encode different problems could be achieved by using heat-controlled or electrostatic gates in only one programmable type of junction instead of the two (isomorphic) static junctions.
  6. Filaments can be prevented from attaching to or detaching from the network by using closed channels with porous openings for allowing the supply of ATP.

[i] Parallel computation with molecular-motor-propelled agents in nanofabricated networks, Proceeding of the National Academy of Science; Dan V. Nicolau Jr., Mercy Lard, Till Kortend, Falco C. M. J. M. van Delftf, Malin Perssong, Elina Bengtssong, Alf Månssong, Stefan Diezd,e, Heiner Linkec, and Dan V. Nicolau; http://www.pnas.org/content/early/2016/02/17/1510825113.abstract

Image Credits: Till Korten, B CUBE; Mercy Lard, Lund University; Falco van Delft, Philips Research

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire