NSF Seeks ‘Breakthroughs’ for Energy-Efficient Computing

By John Russell

March 7, 2016

Breakthroughs, by their nature, are rarely generated on demand. That said, the energy problem in computing today is so acute that the National Science Foundation and Semiconductor Research Corporation are joining forces to stimulate research into developing ‘breakthroughs’ in energy-efficient computing. The new NSF-NRC grants program, Energy-Efficient Computing: from Devices to Architectures (E2CDA), has a budget of up to $4 million per year and is currently seeking proposals due in late March.

“Truly disruptive breakthroughs are now required, and not just from any one segment of the technology stack. Rather, due to the complexity of the challenges, revolutionary new approaches are needed at each level in the hierarchy. Furthermore, simultaneous co-optimization across all levels is essential for the creation of new, sustainable computing platforms,” is the rather dramatic call in the NSF-SRC solicitation.

The new effort, according to NSF, will specifically support new research to minimize the energy impacts of processing, storing, and moving data within future computing systems, and will be synergistic with other research activities that address other aspects of this overarching energy-constrained computing performance challenge.

“Through this joint solicitation, NSF and SRC aim to support game-changing research that can set the stage for the next paradigm of computing – from mobile devices to data centers – by minimizing the energy impact of future computing systems,” wrote Sankar Basu, one of the E2CDA managers, and NSF program Director for Computing and Communication Foundations, in a blogpost last week.

Clearly the HPC community has been bumping up against power issues for some time and resorted to a wide variety of energy management techniques. (Power dissipation alone has prompted a variety of cooling solutions – but they don’t help other power-related computing challenges.) One near-term power challenge that encompasses the full computing infrastructure is DOE’s stated goal to build an exascale computer that operates with a 25MW budget.

The urgent need now, says NSF-SRC, is research and innovation around devices with switching mechanisms that are fundamentally different from that of the conventional FET (field effect transistor), and architectures than are fundamentally different from the von Neumann architecture.

Shown below is a slide taken from a January webinar on E2CDA and its very familiar contents reflect slide presentations that have taken place throughout the computer industry in recent times. (Here’s a link to the slides from the webinar: https://www.nsf.gov/attachments/137395/public/E2CDA_webinar_slides_2016-01-21.pdf)

Screen Shot 2016-03-07 at 5.02.57 PM

The NFS-SRC grants take aim at two broad types (terms of the grant) of approaches to energy reduction and management in computing:

  1. Type One. Disruptive system architectures, circuit microarchitectures, and attendant device and interconnect technology aimed at achieving the highest level of computational energy efficiency for general purpose computing systems.
  1. Type Two. Revolutionary device concepts and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation.

NSF-SRC has set ambitious goals. For type one (architecture and connectivity), proposals must target at least a 100X reduction or more in energy per delivered operation as compared to projected high-performance computing (HPC) systems utilizing conventional CMOS architectures and deeply scaled technology at the end of the roadmap. “As just one example of a metric goal, demonstrations that achieve system-level performance of > 1 Giga-MAC/s/nW could be targeted (MAC = multiply and accumulate operations),” spells out the RFP.

Investigation of new alternative connectivity technologies such as plasmonic, photonic, terahertz or “any others that can enable a dramatic lowering of overall system energy dissipation” are encouraged; so are interconnect technologies that enable functionality (such as embedded ‘intelligent’ routing, etc.) beyond point-to-point connectivity and the architectures that implement them are “also within the scope of interest.”

In addition, proposals are strongly encouraged to include an approach for merging heuristic learning and predictive functionality on the same physical platform as a programmable algorithmic capability.

Type two proposals also have a high bar; they must demonstrate new device concepts with the potential to reduce the energy dissipation involved in processing, storing, and moving information by two or more orders of magnitude.

“Any new switch is likely to have characteristics very different from those of a conventional field effect transistor. The interplay between device characteristics and optimum circuit architectures therefore means that circuit architectures must be reconsidered – this includes digital circuits, but also analog, memory, communication, and/or other more specialized functions. Devices combining digital/analog/memory functions may lend themselves particularly well to unconventional information processing architectures,” notes the RFP.

Proposed architectures should enable a broad range of useful functions, rather than being dedicated to one function or a few particular functions. More details for the terms of the E2CDA grants are show here (below).

NSF_SRC Energy Grant_2016-03-07 PM

Deadline for proposals is March 28. The E2CDA solicitation was posted on NSF on December 29, 2015, with a webinar held on January 21. No awards have been made as of this writing. That Basu wrote the guest post on the The CCC Blog (Computing Community Consortium) last week possibly suggests that responses to the solicitation may have been low so far.

The solicitation also offers guidance on what not to propose. Here are a few examples for both types:

Type one (proposals not sought):

  • Evolutionary extensions of existing general purpose computing platform architectures.
  • Systems that preclude substantially expanding the functionality and performance capabilities of general purpose computing, even if they are also aimed at significantly improving the overall level of energy efficiency.
  • System architectures that cannot be demonstrated to economically support the levels of reliability and physical dimension requirements projected for the future applications being targeted.
    System architectures that are not sufficiently scalable to support a broad base of applications.

Type two (proposals not sought):

  • Materials or device concepts that incrementally extend the capabilities of commercially established devices for logic and memory.
  • CMOS-based approaches to energy-conserving circuits and architectures;
  • Device concepts already the focus of research within established projects and centers, unless the proposed research is a substantive step beyond the currently-funded research.
  • Highly-specialized circuit architectures (“accelerators”) suited to a particular function or a limited set of functions, unless these circuits can be envisioned as economically integrated in a hybrid system capable of more generalized functions.
  • Devices and architectures for quantum computing – although proposals that explore the semi-classical regime (perhaps instantiating state variables with small ensembles of quantum states) or proposals that embrace some attributes of quantum computing achievable in the classical limit (such as energy-conserving circuits) are welcome.

Here is a link for information on the E2CDA grants: http://www.nsf.gov/pubs/2016/nsf16526/nsf16526.htm

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Students Gird for Cluster Mayhem at ASC19

April 23, 2019

Final cluster configurations have been set, and competitors in the ASC19 Student Supercomputer Challenge have started running the various AI models and HPC benchmarks that will determine who is declared champion. But if Read more…

By Alex Woodie

Student Cluster Season Opener: ASC19

April 22, 2019

Calling all computer sports fans! Now hear this:  The 2019 Student Cluster Competition season is officially underway with the beginning of the ASC19 event on Tuesday, April 22nd. For you millions of student cluster c Read more…

By Dan Stark

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This