NSF Seeks ‘Breakthroughs’ for Energy-Efficient Computing

By John Russell

March 7, 2016

Breakthroughs, by their nature, are rarely generated on demand. That said, the energy problem in computing today is so acute that the National Science Foundation and Semiconductor Research Corporation are joining forces to stimulate research into developing ‘breakthroughs’ in energy-efficient computing. The new NSF-NRC grants program, Energy-Efficient Computing: from Devices to Architectures (E2CDA), has a budget of up to $4 million per year and is currently seeking proposals due in late March.

“Truly disruptive breakthroughs are now required, and not just from any one segment of the technology stack. Rather, due to the complexity of the challenges, revolutionary new approaches are needed at each level in the hierarchy. Furthermore, simultaneous co-optimization across all levels is essential for the creation of new, sustainable computing platforms,” is the rather dramatic call in the NSF-SRC solicitation.

The new effort, according to NSF, will specifically support new research to minimize the energy impacts of processing, storing, and moving data within future computing systems, and will be synergistic with other research activities that address other aspects of this overarching energy-constrained computing performance challenge.

“Through this joint solicitation, NSF and SRC aim to support game-changing research that can set the stage for the next paradigm of computing – from mobile devices to data centers – by minimizing the energy impact of future computing systems,” wrote Sankar Basu, one of the E2CDA managers, and NSF program Director for Computing and Communication Foundations, in a blogpost last week.

Clearly the HPC community has been bumping up against power issues for some time and resorted to a wide variety of energy management techniques. (Power dissipation alone has prompted a variety of cooling solutions – but they don’t help other power-related computing challenges.) One near-term power challenge that encompasses the full computing infrastructure is DOE’s stated goal to build an exascale computer that operates with a 25MW budget.

The urgent need now, says NSF-SRC, is research and innovation around devices with switching mechanisms that are fundamentally different from that of the conventional FET (field effect transistor), and architectures than are fundamentally different from the von Neumann architecture.

Shown below is a slide taken from a January webinar on E2CDA and its very familiar contents reflect slide presentations that have taken place throughout the computer industry in recent times. (Here’s a link to the slides from the webinar: https://www.nsf.gov/attachments/137395/public/E2CDA_webinar_slides_2016-01-21.pdf)

Screen Shot 2016-03-07 at 5.02.57 PM

The NFS-SRC grants take aim at two broad types (terms of the grant) of approaches to energy reduction and management in computing:

  1. Type One. Disruptive system architectures, circuit microarchitectures, and attendant device and interconnect technology aimed at achieving the highest level of computational energy efficiency for general purpose computing systems.
  1. Type Two. Revolutionary device concepts and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation.

NSF-SRC has set ambitious goals. For type one (architecture and connectivity), proposals must target at least a 100X reduction or more in energy per delivered operation as compared to projected high-performance computing (HPC) systems utilizing conventional CMOS architectures and deeply scaled technology at the end of the roadmap. “As just one example of a metric goal, demonstrations that achieve system-level performance of > 1 Giga-MAC/s/nW could be targeted (MAC = multiply and accumulate operations),” spells out the RFP.

Investigation of new alternative connectivity technologies such as plasmonic, photonic, terahertz or “any others that can enable a dramatic lowering of overall system energy dissipation” are encouraged; so are interconnect technologies that enable functionality (such as embedded ‘intelligent’ routing, etc.) beyond point-to-point connectivity and the architectures that implement them are “also within the scope of interest.”

In addition, proposals are strongly encouraged to include an approach for merging heuristic learning and predictive functionality on the same physical platform as a programmable algorithmic capability.

Type two proposals also have a high bar; they must demonstrate new device concepts with the potential to reduce the energy dissipation involved in processing, storing, and moving information by two or more orders of magnitude.

“Any new switch is likely to have characteristics very different from those of a conventional field effect transistor. The interplay between device characteristics and optimum circuit architectures therefore means that circuit architectures must be reconsidered – this includes digital circuits, but also analog, memory, communication, and/or other more specialized functions. Devices combining digital/analog/memory functions may lend themselves particularly well to unconventional information processing architectures,” notes the RFP.

Proposed architectures should enable a broad range of useful functions, rather than being dedicated to one function or a few particular functions. More details for the terms of the E2CDA grants are show here (below).

NSF_SRC Energy Grant_2016-03-07 PM

Deadline for proposals is March 28. The E2CDA solicitation was posted on NSF on December 29, 2015, with a webinar held on January 21. No awards have been made as of this writing. That Basu wrote the guest post on the The CCC Blog (Computing Community Consortium) last week possibly suggests that responses to the solicitation may have been low so far.

The solicitation also offers guidance on what not to propose. Here are a few examples for both types:

Type one (proposals not sought):

  • Evolutionary extensions of existing general purpose computing platform architectures.
  • Systems that preclude substantially expanding the functionality and performance capabilities of general purpose computing, even if they are also aimed at significantly improving the overall level of energy efficiency.
  • System architectures that cannot be demonstrated to economically support the levels of reliability and physical dimension requirements projected for the future applications being targeted.
    System architectures that are not sufficiently scalable to support a broad base of applications.

Type two (proposals not sought):

  • Materials or device concepts that incrementally extend the capabilities of commercially established devices for logic and memory.
  • CMOS-based approaches to energy-conserving circuits and architectures;
  • Device concepts already the focus of research within established projects and centers, unless the proposed research is a substantive step beyond the currently-funded research.
  • Highly-specialized circuit architectures (“accelerators”) suited to a particular function or a limited set of functions, unless these circuits can be envisioned as economically integrated in a hybrid system capable of more generalized functions.
  • Devices and architectures for quantum computing – although proposals that explore the semi-classical regime (perhaps instantiating state variables with small ensembles of quantum states) or proposals that embrace some attributes of quantum computing achievable in the classical limit (such as energy-conserving circuits) are welcome.

Here is a link for information on the E2CDA grants: http://www.nsf.gov/pubs/2016/nsf16526/nsf16526.htm

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

What’s New in Computing vs. COVID-19: IceCube, TACC, Watson & More

May 28, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Supercomputer Simulations Explain the Asteroid that Killed the Dinosaurs

May 28, 2020

The supercomputing community has cataclysms on the mind. Hot on the heels of supercomputer-powered research delving into the fate of the neanderthals, a team of researchers used supercomputers at the DiRAC (Distributed R Read more…

By Oliver Peckham

House Bill Seeks Study on Quantum Computing, Identifying Benefits, Supply Chain Risks

May 27, 2020

New legislation under consideration (H.R.6919, Advancing Quantum Computing Act) requests that the Secretary of Commerce conduct a comprehensive study on quantum computing to assess the benefits of the technology for American competitiveness as well as identify supply chain risks. Read more…

By Tiffany Trader

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to have bipartisan support, calls for giving NSF $100 billion Read more…

By John Russell

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This