NSF Seeks ‘Breakthroughs’ for Energy-Efficient Computing

By John Russell

March 7, 2016

Breakthroughs, by their nature, are rarely generated on demand. That said, the energy problem in computing today is so acute that the National Science Foundation and Semiconductor Research Corporation are joining forces to stimulate research into developing ‘breakthroughs’ in energy-efficient computing. The new NSF-NRC grants program, Energy-Efficient Computing: from Devices to Architectures (E2CDA), has a budget of up to $4 million per year and is currently seeking proposals due in late March.

“Truly disruptive breakthroughs are now required, and not just from any one segment of the technology stack. Rather, due to the complexity of the challenges, revolutionary new approaches are needed at each level in the hierarchy. Furthermore, simultaneous co-optimization across all levels is essential for the creation of new, sustainable computing platforms,” is the rather dramatic call in the NSF-SRC solicitation.

The new effort, according to NSF, will specifically support new research to minimize the energy impacts of processing, storing, and moving data within future computing systems, and will be synergistic with other research activities that address other aspects of this overarching energy-constrained computing performance challenge.

“Through this joint solicitation, NSF and SRC aim to support game-changing research that can set the stage for the next paradigm of computing – from mobile devices to data centers – by minimizing the energy impact of future computing systems,” wrote Sankar Basu, one of the E2CDA managers, and NSF program Director for Computing and Communication Foundations, in a blogpost last week.

Clearly the HPC community has been bumping up against power issues for some time and resorted to a wide variety of energy management techniques. (Power dissipation alone has prompted a variety of cooling solutions – but they don’t help other power-related computing challenges.) One near-term power challenge that encompasses the full computing infrastructure is DOE’s stated goal to build an exascale computer that operates with a 25MW budget.

The urgent need now, says NSF-SRC, is research and innovation around devices with switching mechanisms that are fundamentally different from that of the conventional FET (field effect transistor), and architectures than are fundamentally different from the von Neumann architecture.

Shown below is a slide taken from a January webinar on E2CDA and its very familiar contents reflect slide presentations that have taken place throughout the computer industry in recent times. (Here’s a link to the slides from the webinar: https://www.nsf.gov/attachments/137395/public/E2CDA_webinar_slides_2016-01-21.pdf)

Screen Shot 2016-03-07 at 5.02.57 PM

The NFS-SRC grants take aim at two broad types (terms of the grant) of approaches to energy reduction and management in computing:

  1. Type One. Disruptive system architectures, circuit microarchitectures, and attendant device and interconnect technology aimed at achieving the highest level of computational energy efficiency for general purpose computing systems.
  1. Type Two. Revolutionary device concepts and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation.

NSF-SRC has set ambitious goals. For type one (architecture and connectivity), proposals must target at least a 100X reduction or more in energy per delivered operation as compared to projected high-performance computing (HPC) systems utilizing conventional CMOS architectures and deeply scaled technology at the end of the roadmap. “As just one example of a metric goal, demonstrations that achieve system-level performance of > 1 Giga-MAC/s/nW could be targeted (MAC = multiply and accumulate operations),” spells out the RFP.

Investigation of new alternative connectivity technologies such as plasmonic, photonic, terahertz or “any others that can enable a dramatic lowering of overall system energy dissipation” are encouraged; so are interconnect technologies that enable functionality (such as embedded ‘intelligent’ routing, etc.) beyond point-to-point connectivity and the architectures that implement them are “also within the scope of interest.”

In addition, proposals are strongly encouraged to include an approach for merging heuristic learning and predictive functionality on the same physical platform as a programmable algorithmic capability.

Type two proposals also have a high bar; they must demonstrate new device concepts with the potential to reduce the energy dissipation involved in processing, storing, and moving information by two or more orders of magnitude.

“Any new switch is likely to have characteristics very different from those of a conventional field effect transistor. The interplay between device characteristics and optimum circuit architectures therefore means that circuit architectures must be reconsidered – this includes digital circuits, but also analog, memory, communication, and/or other more specialized functions. Devices combining digital/analog/memory functions may lend themselves particularly well to unconventional information processing architectures,” notes the RFP.

Proposed architectures should enable a broad range of useful functions, rather than being dedicated to one function or a few particular functions. More details for the terms of the E2CDA grants are show here (below).

NSF_SRC Energy Grant_2016-03-07 PM

Deadline for proposals is March 28. The E2CDA solicitation was posted on NSF on December 29, 2015, with a webinar held on January 21. No awards have been made as of this writing. That Basu wrote the guest post on the The CCC Blog (Computing Community Consortium) last week possibly suggests that responses to the solicitation may have been low so far.

The solicitation also offers guidance on what not to propose. Here are a few examples for both types:

Type one (proposals not sought):

  • Evolutionary extensions of existing general purpose computing platform architectures.
  • Systems that preclude substantially expanding the functionality and performance capabilities of general purpose computing, even if they are also aimed at significantly improving the overall level of energy efficiency.
  • System architectures that cannot be demonstrated to economically support the levels of reliability and physical dimension requirements projected for the future applications being targeted.
    System architectures that are not sufficiently scalable to support a broad base of applications.

Type two (proposals not sought):

  • Materials or device concepts that incrementally extend the capabilities of commercially established devices for logic and memory.
  • CMOS-based approaches to energy-conserving circuits and architectures;
  • Device concepts already the focus of research within established projects and centers, unless the proposed research is a substantive step beyond the currently-funded research.
  • Highly-specialized circuit architectures (“accelerators”) suited to a particular function or a limited set of functions, unless these circuits can be envisioned as economically integrated in a hybrid system capable of more generalized functions.
  • Devices and architectures for quantum computing – although proposals that explore the semi-classical regime (perhaps instantiating state variables with small ensembles of quantum states) or proposals that embrace some attributes of quantum computing achievable in the classical limit (such as energy-conserving circuits) are welcome.

Here is a link for information on the E2CDA grants: http://www.nsf.gov/pubs/2016/nsf16526/nsf16526.htm

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatment and vaccine development. Now, Lawrence Livermore National Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium-Range Weather Forecasts and the U.S. National Oceanic and At Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be nearer to becoming a practical reality. In this second inst Read more…

By John Russell

SiFive Accelerates Chip Design with Cloud Tools

March 25, 2020

Chip designers are drawing on new cloud resources along with conventional electronic design automation (EDA) tools to accelerate IC templates from tape-out to custom silicon. Among the challengers to chip design leade Read more…

By George Leopold

What’s New in Computing vs. COVID-19: White House Initiative, Frontera, RIKEN & More

March 25, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its scope and operation in a briefing led by Undersecretary of Ener Read more…

By John Russell

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel’s Neuromorphic Chip Scales Up (and It Smells)

March 18, 2020

Neuromorphic chips attempt to directly mimic the behavior of the human brain. Intel, which introduced its Loihi neuromorphic chip in 2017, has just announced that Loihi has been scaled up into a system that simulates over 100 million neurons. Furthermore, it announced that the chip smells. Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This