Seagate Sets Sights on Broader HPC Market

By John Russell

March 15, 2016

In a relatively short time, storage giant Seagate Technology has amped up its push into HPC. Today, four of the top ten supercomputer sites in the world run on Seagate, including all of the newcomers to the top ten, says Seagate[i]. It leads the SAGE project, a Horizon 2020 storage technology program in support of Europe’s exascale effort, and it’s the storage provider (with Cray) on the second phase of the Trinity Supercomputer at Los Alamos National Lab, which when finished will be the fastest storage system in the world at 1.6 TB/s.

“We have only been in the [HPC] business since about 2012,” said Ken Claffey, vice president of ClusterStor HPC and big data business. “The first [big HPC] system we ever really deployed broke the speed barrier; it was a 1TB/s system that we deployed with Cray at NCSA Blue Waters. Before that the fastest system in the world was the Spider (Lustre) system at Oak Ridge National Labs at just 250GB/s. We started with these high end systems and are now expanding through the [rest of] the top 100 and so forth.”

With $13.7 billion in revenue (2015) and 50,000 employees, Seagate (NASDAQ: STX) is a goliath that can’t be ignored. It manufactures on the order of one million drives per day according to Claffey, and spends approximately $900 million yearly on R&D that spans the “physics of the magnetic recording, material science, all the way up to file system and software development.”

Motivating Seagate’s heavy HPC pivot are current and future markets. Start with the current HPC-related storage sector, roughly a $4 billion pie. “Even when you are a $14-$15 billion dollar business, that’s a significant market,” said Claffey. Yet more important, he emphasized, is the collision of HPC and traditional enterprise technology, which is expanding the market.

Gaining HPC market share won’t happen easily. DataDirect Networks and IBM currently dominate what is a very fragmented HPC storage market with a long list of suppliers. They are all chasing what is the fastest growing segment in HPC; most are also eagerly expecting a rapid expansion of demand for high-end storage in the enterprise.

Seagate’s plunge into high performance computing was substantially driven by a series of acquisitions over the last 18 months costing more than $1 billion. (It’s nice to have resources.) Seagate acquired Xyratex (March 2014). It scooped up LSI’s broad flash portfolio (September 2014) from ASICs to PCIe cards to SSDs, and a large contingent of engineers (~600). Most recently, the acquisition of Dot Hill (October 2015) brought its portfolio of enterprise class RAID technology into Seagate.

Claffey came with the Xyratex acquisition. “People know Xyratex primarily for two areas,” said Claffey, “One was capital equipment and initially Seagate was one of our biggest customers. The second area was a business we started focused on developing a more engineered systems specifically for HPC.”

Ken Claffey
Ken Claffey

“Seagate has basically done these acquisitions all built around the HPC storage portfolio we have today,” said Claffey. Seagate’s vertical integration now covers fundamental storage media itself all the way up to the controllers, storage servers, file/fault systems, and storage cluster management software. “We have key intellectual property at every layer.”

“You can see by the investments we are making and some of the core technology innovations [introduced] that we’re focused on HPC because we believe that the architectures and technologies that we are creating to serve this market are informing us to the where the future of the enterprise is going,” he said.

The last few months have provided a glimpse of Seagate’s plans. At SC15, Seagate debuted a substantially updated ClusterStor line with Lustre and IBM Spectrum Scale (previously GPFS) offerings. It also introduced a new archiving platform and what it calls a ClusterStor HPC drive, specifically designed to boost performance in the ClusterStor line (more product details below). Just last week, Seagate demonstrated the fastest single flash-based SSD with throughput performance of 10 GB/; it’s scheduled for release this summer and meets Open Compute Project (OCP) specifications.

Having spent for product and expertise, and having made strides integrating both into its portfolio and organization, Seagate is now actively pursuing a higher profile in HPC. One of the clearest examples of the company’s effort to be associated with tip of the storage technology spear is its leadership of the SAGE project announced last October. This is Seagate’s first contribution to the European Commission (EC) Horizon 2020 Program. [ii]

SAGEUnder program guidelines, Seagate will provide next generation object storage based technologies through new APIs designed specifically for the exascale era. The idea is to create what Seagate calls “percipient storage” – storage that is purpose-built to meet both Big Data and Extreme Compute (BDEC) requirements. Certainly that’s a familiar clarion call in HPC and the enterprise.

The project will run for three years from September 2015 and has “eight fields of research, including: the study of the 1) application use cases co-designing solutions to address 2) Percipient Storage Methods, 3) Advanced Object Storage, and 4) tools for I/O optimization, supporting 5) next generation storage media and developing a supporting ecosystem of 6) Extreme Data Management, 7) Programming techniques and 8) Extreme Data Analysis tools.”

Malcolm Muggeridge, senior engineering director at Seagate based in the U.K. and another Xyratex veteran, is leading the initiative SAGE, which is one of 15 projects recently funded under Horizon 2020. Direct funding is actually through the European Technology Platforms (ETP) organization – “industry-led stakeholder groups recognized by the European Commission as key actors in driving innovation, knowledge transfer and European competitiveness. ETPs develop research and innovation agendas and roadmaps for action at EU and national level to be supported by both private and public funding.”

It probably doesn’t hurt that Muggeridge is vice chair of ETP. “We create the strategic research agenda which is the bible, if you like, that leads the way the programs will be laid out throughout the years of the horizon 2020 program.” The focuses of projects tend to be either technology or application-centric (centers of excellence) driven.

SAGE is focused on relieving storage IO problems and facilitating the capability to compute wherever the data is stored. Looking beyond burst-buffer approaches used now, the goal is to create a storage IO stack that can seamlessly accommodate next-gen NVRAM technologies without being locked in to any particular technology (resistive random access memory (RRAM or ReRAM) for example). Such an architecture, it’s expected, will ‘drastically’ reduce time-to-solution by moving compute to storage. A key to doing so will be use of novel extensions to existing objects.

As described by Sai Narasimhamurthy, Seagate research staff engineer responsible for coordinating the technical work, the stack would “have memory at the top, various NVRAM technologies in the middle, of course you have your flash technology as well as part of the stack, and then you have scratch disks and then archival disks.”

“You could have an object, or a piece of it, lying in high speed memory, a piece of it in NVRAM, and a piece of the object lying in scratch based upon the usage profile of the object,” explained Narasimhamurthy. “The view of the object is transparent to the application, it’s just I0 to an object, but on the back end you could have various types of layout which could be very interesting because you could optimize your layout for performance or for resiliency. You could do all sorts of things.”

Developing HSM tools is another important goal, said Muggeridge. “Currently in HPC you have some HSM tools which are very naïve and very simplistic and just work between the storage and the archive. In SAGE, we are looking to take advantage of the same concept that you can move object data, or piece of an object data, across the stack. So what are the policies that trigger these movements? There are lot of complex parameters that guide this data movement across the stack including all the inputs from the system administrator or equally machine-learning.”

Just six months old, SAGE is making good progress said Muggeridge. Work is following two tracks, one on design of the architecture and another for characterizing performance against different workloads. Eventually a small-scale system will be built and tested at European supercomputer. There’s a ninth-month review coming up in June to determine if the project is proceeding on schedule.

It bears repeating that much of the SAGE work is aimed at accommodating big data workloads (e.g. climate and nuclear fusion use cases now being studied) – as noted earlier, the fundamental idea is that the architecture will to handle most BDEC workflows.

clusterstor-l300-205x300If the SAGE program represents next-gen technology, Claffey said the recently refreshed ClusterStor product line is the current state of the art. At SC15, Seagate rolled the newest ClusterStor products which included a Lustre appliance (L300), IBM Spectrum Scale (G200) appliance, a new archiving product (A200) which works with the ClusterStor product line, and a Multi-Level Security for Lustre Storage (MLS) offering (SL200).

Seagate also introduced its ClusterStor HPC Drive, which it says can be integrated with the ClusterStor L300 for extra high-performing storage in big data environments; it supports up to four terabytes in a single drive slot with the highest sequential data rate of any hard disk drive on the market at 300 megabytes-per-second according to Seagate.

“It’s a hybrid drive. So not only have we done special things in terms of the rotation of the drive (runs at 7200 rpm) but we have also integrated a cache within the drive both for reads and writes and you see significant improvements, for example, at 4K random IO workload,” according to Claffey.

Connectivity improvements were also prominent. The L300 now supports Intel Omni-Path or Mellanox IB EDR Network (see diagram below) and offers performance increments of 12GB to 16GB/s per SSU (Scalable Storage Unit). Seagate promotes it as “the industry’s fastest converged scale-out platform.”

Seagate L300 OmniPath

The addition of the G200 offering means customers now have a ready Seagate choice between Lustre and Spectrum Scale solutions. In the last couple of years, there’s been a fair amount of jockeying between the two popular parallel files systems. Like most observers, Claffey said it’s not an either or question.

“In traditional HPC Lustre has obviously been very strong. All you have to do is look at the top 10 and top 20 systems. IBM (GPFS) or Spectrum Scale has been more successful in the commercial space. GPFS does a very good job where small files move around and in mixed workloads. If you are typically dealing with larger files, more sequential reads, that’s where luster is optimized and does a phenomenal job. If a customer application has a lot of small files and they are random we are going to steer them towards spectrum scale. If the customer has a smaller number of larger files, that’s where Lustre does really well.

“What we are seeing relative to mainstream NAS systems is the adoption of parallel file systems is growing and both luster and spectrum scale are benefiting from that option. Scale-out NAS solutions are struggling with the growth in terms of their performance requirements and the capacity scalability requirements,” he said.

Given the size of the HPC storage market the stakes are high and Seagate has put a fair number of chips on the table. Differentiating itself and its products will depend delivering performance and developing approaches to solve the data IO problem currently hobbling storage system performance. Virtually all suppliers offer some work-around; it’s a blend of cache and traffic monitoring techniques to make the storage ‘application aware.’

“All these options are basically caching, right, at what level, where are you doing the caching, and you are trying to get more flash into the system,” said Claffey who contends there are really just two options: 1) you can throw a lot of flash at it and that’s going to be an expensive option; or 2) you can come in with a more hybrid architecture.

“What we are proposing is a hybrid architecture. Our approach is to have multiple layers of caching but we do not want to add additional software layers into the stack. Users and storage systems builders are struggling to manage the movement of data within the software layers that are already there,” he said.

The Seagate approach is to add multiple layers of caching “within the file system itself both from a software perspective, from a hardware perspective and a system perspective without adding in an additional layer. Look at what Cray is doing. Look at what Intel is doing with the Aurora system. We think the majority of the market has already determined that that is probably the best approach rather than adding in more layers to an already complicated stack,” said Claffey

According to Claffey, Seagate customers have collectively stood up more than an exabyte of total storage – to put that into perspective the Titan supercomputer at ORNL has roughly 40 petabytes of storage. Claffey also said Seagate’s four largest storage installations are all in the oil and gas sector although he didn’t identify them.

It will be interesting to see how Seagate’s expansion into HPC affects the supplier landscape. There’s no lack of competitive zeal at Seagate. Claffey said about one prominent competitor, “If I show them in their most favorable light, in the most optimum, downhill, wind assisted configuration, I mean that very genuinely, actually it’s pretty comparable to our previous generation the cs9000 product.” Time will tell.

[i] Top500 List, 11/2015

[ii] In addition to Seagate Systems (UK) Limited, the SAGE participants include Allinea Software  (UK),  BULL SAS (Atos SE) (France), Culham Centre for Fusion Energy (CCFE)  (UK), French Alternative Energies and Atomic Energy Commission (CEA) (France), Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) (Germany), Diamond Light Source (UK), Forschungszentrum Jülich (Germany), Kungliga Tekniska Hoegskolan (KTH) (Sweden) and the Science and Technology Facilities Council (STFC) (UK).

Shares
. Read more…

" share_counter=""]
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire