ARM Scales Chips for Datacenters, HPC

By George Leopold

March 17, 2016

ARM Ltd., the U.K. chip design and licensing vendor, is targeting datacenters and processors intended for high-performance computing in a chip process technology deal with the world’s largest chip foundry.

ARM (LSE: ARM, NASDAQ: ARMH) and Taiwan Semiconductor Manufacturing Co. (NYSE: TSM) announced a multiyear agreement this week to collaborate on leading-edge 7-nanometer FinFET process technology. (FinFET stands for fin-shaped field-effect transistor, an emerging process technology that reduces leakage current in systems-on-chip, or SoCs.)

The partners said the deal extends their existing partnership to push the latest device process technology into datacenters and next-generation networks. It also builds on previous collaboration on earlier generations of FinFET process technology used in ARM’s chip intellectual property offerings.

Chip scaling is advancing in parallel with hyper-convergence in datacenters. ARM is attempting to make inroads in datacenters dominated by x86-based infrastructure through what it claims are up to 10-fold increases in compute density for specific datacenter workloads. The deal with TSMC enables the chip vendor to design processors aimed datacenters and network infrastructure that are optimized for the Taiwan foundry’s 7-nanometer FinFET process technology.

The scaling of chip component densities translates to higher compute density across IT infrastructure while reducing power consumption, the partners claimed.

For TSMC, Hsinchu, Taiwan, collaboration with ARM allows it to migrate its chip process technology from mostly mobile devices to high performance computing as advanced scale architectures make inroads in the datacenter and other IT infrastructure.

TSMC said high-performance computing SoCs based on its latest chip processing technology would boost performance without a power penalty while reducing power consumption at the 10-nanometer FinFET process node.

ARM and TSMC have collaborated on previous generations of FinFET process technology. ARM’s Cortex-A72 processor is based on TSMC’s 16- and 10-nanometer FinFET process nodes.

ARM cores have slowly made their way into server SoCs. Late last year it announced new math libraries running on its 64-bit processors aimed at HPC servers. “The HPC community are early adopters of ARM-based servers and the introduction of optimized math routines build a foundation for enabling scientific computing on 64-bit ARM based compute platforms,” the chip designer noted in statement releasing the libraries.

ARM also announced a partnership with chip networking specialist Cavium (NASDAQ: CAVM) to develop HPC and big data analytics software running on its ARM-based processing platform.

Meanwhile, semiconductor foundries like TSMC have been steadily moving down the chip-scaling curve from 16- to 10- to 7-nanometer designs based on lower power FinFET process technology. TSMC said in January it expects to begin production at the 7-nanometer node in 2017.

Along with HPC, ARM continues to target Internet of Things applications. Its IoT strategy focuses on development and scaling of its “mbed” technology, which includes a “full-stack” operating system tailored to its Cortex-M 32-bit microcontrollers and a “device server” that handles connections from IoT devices.

The chip vendor announced plans last September to collaborate with IBM on an IoT platform that would integrate ARM devices with IBM analytics services designed to collect data from networked appliances and sensors.

Questions about ARM traction in the server market have swirled for some time. The move to a smaller feature size may help build momentum. Filippo Mantovani, coordinator of the European Mont-Blanc Project (Barcelona Supercomputer Center) intended to explore new ways to achieve energy efficient architecture for supercomputing (See the 2013 Mont-Blanc paper, Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?”) offered these observation about ARM market traction in an earlier HPCwire article.

“It depends which ARM processors are we looking at. Enhancements of mobile System on Chips (SoCs) are driven by big producers of mobile devices (Apple, Samsung, Huawei, etc.). From this market we will see surprisingly good and increasingly powerful SoCs, but I consider unlikely that one of them will be integrated as-is in a high-end HPC system, unless some of these big players want to enter HPC market. Due to its cost effectiveness, I [still] consider [that] mobile technology is extremely interesting for compute intensive embedded applications as well as small labs and companies looking for cheap/mobile/easy scientific computation, not necessarily in the HPC area,” said Mantovani.

“If we are looking at ARM processors in the server market, then the things are slightly different. The ARM-based chips for servers, in fact, seem to evolve fast and [are becoming] more popular (X-Gene, Cavium ThunderX). Strangely enough, I consider it more urgent to have reliable and unified software support for the ARM platforms appearing on the market, than adding specific features to the silicon. This support would allow ARM technology to be “better socially accepted” within the HPC community. In this sense, Mont-Blanc is going to contribute with this system software stack and programming model, but in terms of compilers a strong contribution from IP designers and SoC producers is [still] required.”

Last year, the Mont-Blanc project received a three extension to further develop the OmpSs parallel programming model to automatically exploit multiple cluster nodes, transparent application check pointing for fault tolerance, support for ARMv8 64-bit processors, and the initial design of the Mont-Blanc exascale architecture.

This article first appeared in HPCwire’s sister publication, EnterpriseTech.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This