ARM Scales Chips for Datacenters, HPC

By George Leopold

March 17, 2016

ARM Ltd., the U.K. chip design and licensing vendor, is targeting datacenters and processors intended for high-performance computing in a chip process technology deal with the world’s largest chip foundry.

ARM (LSE: ARM, NASDAQ: ARMH) and Taiwan Semiconductor Manufacturing Co. (NYSE: TSM) announced a multiyear agreement this week to collaborate on leading-edge 7-nanometer FinFET process technology. (FinFET stands for fin-shaped field-effect transistor, an emerging process technology that reduces leakage current in systems-on-chip, or SoCs.)

The partners said the deal extends their existing partnership to push the latest device process technology into datacenters and next-generation networks. It also builds on previous collaboration on earlier generations of FinFET process technology used in ARM’s chip intellectual property offerings.

Chip scaling is advancing in parallel with hyper-convergence in datacenters. ARM is attempting to make inroads in datacenters dominated by x86-based infrastructure through what it claims are up to 10-fold increases in compute density for specific datacenter workloads. The deal with TSMC enables the chip vendor to design processors aimed datacenters and network infrastructure that are optimized for the Taiwan foundry’s 7-nanometer FinFET process technology.

The scaling of chip component densities translates to higher compute density across IT infrastructure while reducing power consumption, the partners claimed.

For TSMC, Hsinchu, Taiwan, collaboration with ARM allows it to migrate its chip process technology from mostly mobile devices to high performance computing as advanced scale architectures make inroads in the datacenter and other IT infrastructure.

TSMC said high-performance computing SoCs based on its latest chip processing technology would boost performance without a power penalty while reducing power consumption at the 10-nanometer FinFET process node.

ARM and TSMC have collaborated on previous generations of FinFET process technology. ARM’s Cortex-A72 processor is based on TSMC’s 16- and 10-nanometer FinFET process nodes.

ARM cores have slowly made their way into server SoCs. Late last year it announced new math libraries running on its 64-bit processors aimed at HPC servers. “The HPC community are early adopters of ARM-based servers and the introduction of optimized math routines build a foundation for enabling scientific computing on 64-bit ARM based compute platforms,” the chip designer noted in statement releasing the libraries.

ARM also announced a partnership with chip networking specialist Cavium (NASDAQ: CAVM) to develop HPC and big data analytics software running on its ARM-based processing platform.

Meanwhile, semiconductor foundries like TSMC have been steadily moving down the chip-scaling curve from 16- to 10- to 7-nanometer designs based on lower power FinFET process technology. TSMC said in January it expects to begin production at the 7-nanometer node in 2017.

Along with HPC, ARM continues to target Internet of Things applications. Its IoT strategy focuses on development and scaling of its “mbed” technology, which includes a “full-stack” operating system tailored to its Cortex-M 32-bit microcontrollers and a “device server” that handles connections from IoT devices.

The chip vendor announced plans last September to collaborate with IBM on an IoT platform that would integrate ARM devices with IBM analytics services designed to collect data from networked appliances and sensors.

Questions about ARM traction in the server market have swirled for some time. The move to a smaller feature size may help build momentum. Filippo Mantovani, coordinator of the European Mont-Blanc Project (Barcelona Supercomputer Center) intended to explore new ways to achieve energy efficient architecture for supercomputing (See the 2013 Mont-Blanc paper, Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for HPC?”) offered these observation about ARM market traction in an earlier HPCwire article.

“It depends which ARM processors are we looking at. Enhancements of mobile System on Chips (SoCs) are driven by big producers of mobile devices (Apple, Samsung, Huawei, etc.). From this market we will see surprisingly good and increasingly powerful SoCs, but I consider unlikely that one of them will be integrated as-is in a high-end HPC system, unless some of these big players want to enter HPC market. Due to its cost effectiveness, I [still] consider [that] mobile technology is extremely interesting for compute intensive embedded applications as well as small labs and companies looking for cheap/mobile/easy scientific computation, not necessarily in the HPC area,” said Mantovani.

“If we are looking at ARM processors in the server market, then the things are slightly different. The ARM-based chips for servers, in fact, seem to evolve fast and [are becoming] more popular (X-Gene, Cavium ThunderX). Strangely enough, I consider it more urgent to have reliable and unified software support for the ARM platforms appearing on the market, than adding specific features to the silicon. This support would allow ARM technology to be “better socially accepted” within the HPC community. In this sense, Mont-Blanc is going to contribute with this system software stack and programming model, but in terms of compilers a strong contribution from IP designers and SoC producers is [still] required.”

Last year, the Mont-Blanc project received a three extension to further develop the OmpSs parallel programming model to automatically exploit multiple cluster nodes, transparent application check pointing for fault tolerance, support for ARMv8 64-bit processors, and the initial design of the Mont-Blanc exascale architecture.

This article first appeared in HPCwire’s sister publication, EnterpriseTech.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in its cloud service.  Google claimed the CPU is based on cut Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire