Beyond von Neumann, Neuromorphic Computing Steadily Advances

By John Russell

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical.

This week neuromorphic computing takes another step forward with a workshop being offered to users from academia, industry and education interested in using two European neuromorphic systems that have been years in development and are coming online for broader use – the BrainScaleS system launching at the Kirchhoff Institute for Physics of Heidelberg University and SpiNNaker, a complementary approach and similarly sized system at the University of Manchester.

Ramping up BrainScaleS and SpiNNaker is an important milestone, strengthening Europe’s position in hardware development for alternative computing. Both projects are part of the European Human Brain Project, originally funded by the European Commission’s Future Emerging Technologies program (2005-2015). The webcast, which will be streamed live on Tuesday, will cover the architecture for both systems and approaches to application development.

BrainScaleS and SpiNNaker take different tacks for modeling neuron activity. One approach is to use traditional analog circuits — like the chips being developed by the BrainScaleS. Analog circuits can be fast and energy and efficient. Conversely, SpiNNaker’s architecture closely links a very large number of digital cores (also fast, and in this case, also energy efficient).

BrainScaleS post-processed wafer containing about 20 million plastic synapses.
BrainScaleS post-processed wafer containing about 20 million plastic synapses.

BrainScaleS’s neuromorphic hardware is based around wafer-scale analog, very large scale integration (VLSI). Each 20-cm-diameter silicon wafer contains 384 chips, each of which implements 128,000 synapses and up to 512 spiking neurons[i]. This gives a total of around 200,000 neurons and 49 million synapses per wafer. These VLSI models operate considerably faster than the biological originals and allow the emulated neural networks to evolve tens-of-thousands times quicker than real time. Put another way, a biological day of learning can be compressed to 100 seconds on the machine.

Leader of the BrainScaleS project, Prof. Dr. Karlheinz Meier (Heidelberg University) explains, “The BrainScaleS system goes beyond the paradigms of a Turing machine and the von Neumann architecture. It is neither executing a sequence of instructions nor is it constructed as a system of physically separated computing and memory units. It is rather a direct, silicon based image of the neuronal networks found in nature, realizing cells, connections and inter-cell communications by means of modern analogue and digital microelectronics.”

Learning – not external programming – is a key guiding principle. Unlike traditional computer architecture in which a structured program explicitly carries out an order of tasks, brains are fundamentally learning machines that turn patterns into programs.

Steve Furber, a professor at the University of Manchester and a co-designer of the ARM chip architecture, leads the SpiNNaker team. SpiNNaker is a contrived acronym derived from Spiking Neural Network Architecture. The machine consists of 57,600 identical 18-core processors, giving it 1,036,800 ARM968 cores in total. The die is fabricated by United Microelectronics Corporation (UMC) on a 130 nm CMOS process. Each System-in-Package (SiP) node has an on-board router to form links with its neighbors, as well as 128 Mbyte off-die SDRAM to hold synaptic weights.

SpiNNaker die 800xSpiNNaker, too, is built to mimic the brain’s biological structure and behavior. It will exhibit massive parallelism and resilience to failure of individual components. With more than one million cores, and one thousand simulated neurons per core, SpinNNaker should be capable of simulating one billion neurons in real-time. This equates to a little over one percent of the human brain’s estimated 85 billion neurons.

Rather than implement one particular algorithm, SpiNNaker will be a platform on which different algorithms can be tested. Various types of neural networks can be designed and run on the machine, thus simulating different kinds of neurons and connectivity patterns.

Both BrainScaleS and SpiNNaker architectures will be discussed during the Web-based workshop on March 22, scheduled from 3 pm to 6 pm CET. Together, the systems located in Heidelberg and Manchester comprise the “Neuromorphic Computing Platform” of the Human Brain Project.

Much of the early work on both machines will be basic research on self-organization in neural networks. Other potential applications, for example, are in energy and time efficiency optimization, broadly similar to deep learning technology developed by companies like Google and Facebook for the analysis of large data volumes using conventional high performance computers.

IBM’s Dharmendra Modha
IBM’s Dharmendra Modha

Europe, of course, is hardly alone in pursuing neuromorphic computing. Most prominent in the U.S. is IBM Research’s TrueNorth Chip effort. Dharmendra Modha, IBM fellow and chief scientist for brain-inspired computing, wrote an interesting commentary on the TrueNorth project that traces development of von Neumann architecture based computing and contrasts it with neuromorphic computing approaches: Introducing a Brain-inspired Computer. Though written in 2014, it remains relevant.

TrueNorth chip, introduced in August 2014, is a neuromorphic CMOS chip that consists of 4,096 hardware cores, each one simulating 256 programmable siliconneurons” for a total of just over a million neurons. Each neuron has 256 programmable “synapses” which convey the signals between them. Hence, the total number of programmable synapses is just over 268 million (228). In terms of basic building blocks, its transistor count is 5.4 billion.

Developed under the DARPA SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) project, TrueNorth’s computing power has been characterized as roughly equivalent to the brainpower of a rodent. It also circumvents the von-Neumann-architecture bottlenecks, is very energy-efficient, consumes merely 70 milliwatts, and is capable of 46 billion synaptic operations per second, per watt – literally a synaptic supercomputer in your palm.

BrainScaleS, SpiNNaker, and TrueNorth are just three examples of many ongoing neuromorphic computing projects. Turning them into commercial products or more general purpose computing machines remains a challenge.

Indeed, IBM put together a paper on cognitive computing commercialization and barriers[ii]. “New thinking, not only on the part of programmers and application developers, but also by organizational decision makers who seek to link technological possibilities to market opportunity. While incremental innovation can be achieved on the basis of existing knowledge in well-charted commercial territory, radical innovation entails far greater uncertainty.”

Among the barriers cited were: formulating business models and predicting future revenue to calibrate investment, defining strategy and structure to execute and finally, overcoming communicative and functional boundaries.

Much of the drive to push neuromorphic computing stems from the ongoing decline of Moore’s law, and this excerpt from a 2014 ACM article[iii] still sums circumstances today:

As the long-predicted end of Moore’s Law seems ever more imminent, researchers around the globe are seriously evaluating a profoundly different approach to large-scale computing inspired by biological principles. In the traditional von Neumann architecture, a powerful logic core (or several in parallel) operates sequentially on data fetched from memory. In contrast, “neuromorphic” computing distributes both computation and memory among an enormous number of relatively primitive “neurons,” each communicating with hundreds or thousands of other neurons through “synapses.” Ongoing projects are exploring this architecture at a vastly larger scale than ever before, rivaling mammalian nervous systems, and developing programming environments that take advantage of them. Still, the detailed implementation, such as the use of analog circuits, differs between the projects, and it may be several years before their relative merits can be assessed.

Researchers have long recognized the extraordinary energy stinginess of biological computing, most clearly in a visionary 1990 paper by the California Institute of Technology (Caltech)’s Carver Mead that established the term “neuromorphic.” Yet industry’s steady success in scaling traditional technology kept the pressure off.”

[i] “Spiking neural networks (SNNs) fall into the third generation of neural network models, increasing the level of realism in a neural simulation. In addition to neuronal and synaptic state, SNNs also incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not fire at each propagation cycle (as it happens with typical multi-layer perceptron networks), but rather fire only when a membrane potential – an intrinsic quality of the neuron related to its membrane electrical charge – reaches a specific value. When a neuron fires, it generates a signal which travels to other neurons which, in turn, increase or decrease their potentials in accordance with this signal. In the context of spiking neural networks, the current activation level (modeled as some differential equation) is normally considered to be the neuron’s state, with incoming spikes pushing this value higher, and then either firing or decaying over time. Various coding methods exist for interpreting the outgoing spike train as a real-value number, either relying on the frequency of spikes, or the timing between spikes, to encode information.” From https://en.wikipedia.org/wiki/Spiking_neural_network.

[ii] For more on applications, see IBM paper, Cognitive Computing Commercialization: Boundary Objects for Communication, https://dl.dropboxusercontent.com/u/91714474/Papers/023.IDEMI’13_boundary%20objects_3.4.pdf?cm_mc_uid=86343320971914489086046&cm_mc_sid_50200000=1458418853, Presented at 3rd INT. CONF. ON INTEGRATION OF DESIGN, ENGINEERING & MANAGEMENT FOR INNOVATION, Porto, Portugal, 4-6th September 2013

[iii] Communications of the ACM, Neuromorphic Computing Gets Ready for the (Really) Big Time, http://cacm.acm.org/magazines/2014/6/175183-neuromorphic-computing-gets-ready-for-the-really-big-time/abstract

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This