Beyond von Neumann, Neuromorphic Computing Steadily Advances

By John Russell

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical.

This week neuromorphic computing takes another step forward with a workshop being offered to users from academia, industry and education interested in using two European neuromorphic systems that have been years in development and are coming online for broader use – the BrainScaleS system launching at the Kirchhoff Institute for Physics of Heidelberg University and SpiNNaker, a complementary approach and similarly sized system at the University of Manchester.

Ramping up BrainScaleS and SpiNNaker is an important milestone, strengthening Europe’s position in hardware development for alternative computing. Both projects are part of the European Human Brain Project, originally funded by the European Commission’s Future Emerging Technologies program (2005-2015). The webcast, which will be streamed live on Tuesday, will cover the architecture for both systems and approaches to application development.

BrainScaleS and SpiNNaker take different tacks for modeling neuron activity. One approach is to use traditional analog circuits — like the chips being developed by the BrainScaleS. Analog circuits can be fast and energy and efficient. Conversely, SpiNNaker’s architecture closely links a very large number of digital cores (also fast, and in this case, also energy efficient).

BrainScaleS post-processed wafer containing about 20 million plastic synapses.
BrainScaleS post-processed wafer containing about 20 million plastic synapses.

BrainScaleS’s neuromorphic hardware is based around wafer-scale analog, very large scale integration (VLSI). Each 20-cm-diameter silicon wafer contains 384 chips, each of which implements 128,000 synapses and up to 512 spiking neurons[i]. This gives a total of around 200,000 neurons and 49 million synapses per wafer. These VLSI models operate considerably faster than the biological originals and allow the emulated neural networks to evolve tens-of-thousands times quicker than real time. Put another way, a biological day of learning can be compressed to 100 seconds on the machine.

Leader of the BrainScaleS project, Prof. Dr. Karlheinz Meier (Heidelberg University) explains, “The BrainScaleS system goes beyond the paradigms of a Turing machine and the von Neumann architecture. It is neither executing a sequence of instructions nor is it constructed as a system of physically separated computing and memory units. It is rather a direct, silicon based image of the neuronal networks found in nature, realizing cells, connections and inter-cell communications by means of modern analogue and digital microelectronics.”

Learning – not external programming – is a key guiding principle. Unlike traditional computer architecture in which a structured program explicitly carries out an order of tasks, brains are fundamentally learning machines that turn patterns into programs.

Steve Furber, a professor at the University of Manchester and a co-designer of the ARM chip architecture, leads the SpiNNaker team. SpiNNaker is a contrived acronym derived from Spiking Neural Network Architecture. The machine consists of 57,600 identical 18-core processors, giving it 1,036,800 ARM968 cores in total. The die is fabricated by United Microelectronics Corporation (UMC) on a 130 nm CMOS process. Each System-in-Package (SiP) node has an on-board router to form links with its neighbors, as well as 128 Mbyte off-die SDRAM to hold synaptic weights.

SpiNNaker die 800xSpiNNaker, too, is built to mimic the brain’s biological structure and behavior. It will exhibit massive parallelism and resilience to failure of individual components. With more than one million cores, and one thousand simulated neurons per core, SpinNNaker should be capable of simulating one billion neurons in real-time. This equates to a little over one percent of the human brain’s estimated 85 billion neurons.

Rather than implement one particular algorithm, SpiNNaker will be a platform on which different algorithms can be tested. Various types of neural networks can be designed and run on the machine, thus simulating different kinds of neurons and connectivity patterns.

Both BrainScaleS and SpiNNaker architectures will be discussed during the Web-based workshop on March 22, scheduled from 3 pm to 6 pm CET. Together, the systems located in Heidelberg and Manchester comprise the “Neuromorphic Computing Platform” of the Human Brain Project.

Much of the early work on both machines will be basic research on self-organization in neural networks. Other potential applications, for example, are in energy and time efficiency optimization, broadly similar to deep learning technology developed by companies like Google and Facebook for the analysis of large data volumes using conventional high performance computers.

IBM’s Dharmendra Modha
IBM’s Dharmendra Modha

Europe, of course, is hardly alone in pursuing neuromorphic computing. Most prominent in the U.S. is IBM Research’s TrueNorth Chip effort. Dharmendra Modha, IBM fellow and chief scientist for brain-inspired computing, wrote an interesting commentary on the TrueNorth project that traces development of von Neumann architecture based computing and contrasts it with neuromorphic computing approaches: Introducing a Brain-inspired Computer. Though written in 2014, it remains relevant.

TrueNorth chip, introduced in August 2014, is a neuromorphic CMOS chip that consists of 4,096 hardware cores, each one simulating 256 programmable siliconneurons” for a total of just over a million neurons. Each neuron has 256 programmable “synapses” which convey the signals between them. Hence, the total number of programmable synapses is just over 268 million (228). In terms of basic building blocks, its transistor count is 5.4 billion.

Developed under the DARPA SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) project, TrueNorth’s computing power has been characterized as roughly equivalent to the brainpower of a rodent. It also circumvents the von-Neumann-architecture bottlenecks, is very energy-efficient, consumes merely 70 milliwatts, and is capable of 46 billion synaptic operations per second, per watt – literally a synaptic supercomputer in your palm.

BrainScaleS, SpiNNaker, and TrueNorth are just three examples of many ongoing neuromorphic computing projects. Turning them into commercial products or more general purpose computing machines remains a challenge.

Indeed, IBM put together a paper on cognitive computing commercialization and barriers[ii]. “New thinking, not only on the part of programmers and application developers, but also by organizational decision makers who seek to link technological possibilities to market opportunity. While incremental innovation can be achieved on the basis of existing knowledge in well-charted commercial territory, radical innovation entails far greater uncertainty.”

Among the barriers cited were: formulating business models and predicting future revenue to calibrate investment, defining strategy and structure to execute and finally, overcoming communicative and functional boundaries.

Much of the drive to push neuromorphic computing stems from the ongoing decline of Moore’s law, and this excerpt from a 2014 ACM article[iii] still sums circumstances today:

As the long-predicted end of Moore’s Law seems ever more imminent, researchers around the globe are seriously evaluating a profoundly different approach to large-scale computing inspired by biological principles. In the traditional von Neumann architecture, a powerful logic core (or several in parallel) operates sequentially on data fetched from memory. In contrast, “neuromorphic” computing distributes both computation and memory among an enormous number of relatively primitive “neurons,” each communicating with hundreds or thousands of other neurons through “synapses.” Ongoing projects are exploring this architecture at a vastly larger scale than ever before, rivaling mammalian nervous systems, and developing programming environments that take advantage of them. Still, the detailed implementation, such as the use of analog circuits, differs between the projects, and it may be several years before their relative merits can be assessed.

Researchers have long recognized the extraordinary energy stinginess of biological computing, most clearly in a visionary 1990 paper by the California Institute of Technology (Caltech)’s Carver Mead that established the term “neuromorphic.” Yet industry’s steady success in scaling traditional technology kept the pressure off.”

[i] “Spiking neural networks (SNNs) fall into the third generation of neural network models, increasing the level of realism in a neural simulation. In addition to neuronal and synaptic state, SNNs also incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not fire at each propagation cycle (as it happens with typical multi-layer perceptron networks), but rather fire only when a membrane potential – an intrinsic quality of the neuron related to its membrane electrical charge – reaches a specific value. When a neuron fires, it generates a signal which travels to other neurons which, in turn, increase or decrease their potentials in accordance with this signal. In the context of spiking neural networks, the current activation level (modeled as some differential equation) is normally considered to be the neuron’s state, with incoming spikes pushing this value higher, and then either firing or decaying over time. Various coding methods exist for interpreting the outgoing spike train as a real-value number, either relying on the frequency of spikes, or the timing between spikes, to encode information.” From https://en.wikipedia.org/wiki/Spiking_neural_network.

[ii] For more on applications, see IBM paper, Cognitive Computing Commercialization: Boundary Objects for Communication, https://dl.dropboxusercontent.com/u/91714474/Papers/023.IDEMI’13_boundary%20objects_3.4.pdf?cm_mc_uid=86343320971914489086046&cm_mc_sid_50200000=1458418853, Presented at 3rd INT. CONF. ON INTEGRATION OF DESIGN, ENGINEERING & MANAGEMENT FOR INNOVATION, Porto, Portugal, 4-6th September 2013

[iii] Communications of the ACM, Neuromorphic Computing Gets Ready for the (Really) Big Time, http://cacm.acm.org/magazines/2014/6/175183-neuromorphic-computing-gets-ready-for-the-really-big-time/abstract

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This