Beyond von Neumann, Neuromorphic Computing Steadily Advances

By John Russell

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical.

This week neuromorphic computing takes another step forward with a workshop being offered to users from academia, industry and education interested in using two European neuromorphic systems that have been years in development and are coming online for broader use – the BrainScaleS system launching at the Kirchhoff Institute for Physics of Heidelberg University and SpiNNaker, a complementary approach and similarly sized system at the University of Manchester.

Ramping up BrainScaleS and SpiNNaker is an important milestone, strengthening Europe’s position in hardware development for alternative computing. Both projects are part of the European Human Brain Project, originally funded by the European Commission’s Future Emerging Technologies program (2005-2015). The webcast, which will be streamed live on Tuesday, will cover the architecture for both systems and approaches to application development.

BrainScaleS and SpiNNaker take different tacks for modeling neuron activity. One approach is to use traditional analog circuits — like the chips being developed by the BrainScaleS. Analog circuits can be fast and energy and efficient. Conversely, SpiNNaker’s architecture closely links a very large number of digital cores (also fast, and in this case, also energy efficient).

BrainScaleS post-processed wafer containing about 20 million plastic synapses.
BrainScaleS post-processed wafer containing about 20 million plastic synapses.

BrainScaleS’s neuromorphic hardware is based around wafer-scale analog, very large scale integration (VLSI). Each 20-cm-diameter silicon wafer contains 384 chips, each of which implements 128,000 synapses and up to 512 spiking neurons[i]. This gives a total of around 200,000 neurons and 49 million synapses per wafer. These VLSI models operate considerably faster than the biological originals and allow the emulated neural networks to evolve tens-of-thousands times quicker than real time. Put another way, a biological day of learning can be compressed to 100 seconds on the machine.

Leader of the BrainScaleS project, Prof. Dr. Karlheinz Meier (Heidelberg University) explains, “The BrainScaleS system goes beyond the paradigms of a Turing machine and the von Neumann architecture. It is neither executing a sequence of instructions nor is it constructed as a system of physically separated computing and memory units. It is rather a direct, silicon based image of the neuronal networks found in nature, realizing cells, connections and inter-cell communications by means of modern analogue and digital microelectronics.”

Learning – not external programming – is a key guiding principle. Unlike traditional computer architecture in which a structured program explicitly carries out an order of tasks, brains are fundamentally learning machines that turn patterns into programs.

Steve Furber, a professor at the University of Manchester and a co-designer of the ARM chip architecture, leads the SpiNNaker team. SpiNNaker is a contrived acronym derived from Spiking Neural Network Architecture. The machine consists of 57,600 identical 18-core processors, giving it 1,036,800 ARM968 cores in total. The die is fabricated by United Microelectronics Corporation (UMC) on a 130 nm CMOS process. Each System-in-Package (SiP) node has an on-board router to form links with its neighbors, as well as 128 Mbyte off-die SDRAM to hold synaptic weights.

SpiNNaker die 800xSpiNNaker, too, is built to mimic the brain’s biological structure and behavior. It will exhibit massive parallelism and resilience to failure of individual components. With more than one million cores, and one thousand simulated neurons per core, SpinNNaker should be capable of simulating one billion neurons in real-time. This equates to a little over one percent of the human brain’s estimated 85 billion neurons.

Rather than implement one particular algorithm, SpiNNaker will be a platform on which different algorithms can be tested. Various types of neural networks can be designed and run on the machine, thus simulating different kinds of neurons and connectivity patterns.

Both BrainScaleS and SpiNNaker architectures will be discussed during the Web-based workshop on March 22, scheduled from 3 pm to 6 pm CET. Together, the systems located in Heidelberg and Manchester comprise the “Neuromorphic Computing Platform” of the Human Brain Project.

Much of the early work on both machines will be basic research on self-organization in neural networks. Other potential applications, for example, are in energy and time efficiency optimization, broadly similar to deep learning technology developed by companies like Google and Facebook for the analysis of large data volumes using conventional high performance computers.

IBM’s Dharmendra Modha
IBM’s Dharmendra Modha

Europe, of course, is hardly alone in pursuing neuromorphic computing. Most prominent in the U.S. is IBM Research’s TrueNorth Chip effort. Dharmendra Modha, IBM fellow and chief scientist for brain-inspired computing, wrote an interesting commentary on the TrueNorth project that traces development of von Neumann architecture based computing and contrasts it with neuromorphic computing approaches: Introducing a Brain-inspired Computer. Though written in 2014, it remains relevant.

TrueNorth chip, introduced in August 2014, is a neuromorphic CMOS chip that consists of 4,096 hardware cores, each one simulating 256 programmable siliconneurons” for a total of just over a million neurons. Each neuron has 256 programmable “synapses” which convey the signals between them. Hence, the total number of programmable synapses is just over 268 million (228). In terms of basic building blocks, its transistor count is 5.4 billion.

Developed under the DARPA SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) project, TrueNorth’s computing power has been characterized as roughly equivalent to the brainpower of a rodent. It also circumvents the von-Neumann-architecture bottlenecks, is very energy-efficient, consumes merely 70 milliwatts, and is capable of 46 billion synaptic operations per second, per watt – literally a synaptic supercomputer in your palm.

BrainScaleS, SpiNNaker, and TrueNorth are just three examples of many ongoing neuromorphic computing projects. Turning them into commercial products or more general purpose computing machines remains a challenge.

Indeed, IBM put together a paper on cognitive computing commercialization and barriers[ii]. “New thinking, not only on the part of programmers and application developers, but also by organizational decision makers who seek to link technological possibilities to market opportunity. While incremental innovation can be achieved on the basis of existing knowledge in well-charted commercial territory, radical innovation entails far greater uncertainty.”

Among the barriers cited were: formulating business models and predicting future revenue to calibrate investment, defining strategy and structure to execute and finally, overcoming communicative and functional boundaries.

Much of the drive to push neuromorphic computing stems from the ongoing decline of Moore’s law, and this excerpt from a 2014 ACM article[iii] still sums circumstances today:

As the long-predicted end of Moore’s Law seems ever more imminent, researchers around the globe are seriously evaluating a profoundly different approach to large-scale computing inspired by biological principles. In the traditional von Neumann architecture, a powerful logic core (or several in parallel) operates sequentially on data fetched from memory. In contrast, “neuromorphic” computing distributes both computation and memory among an enormous number of relatively primitive “neurons,” each communicating with hundreds or thousands of other neurons through “synapses.” Ongoing projects are exploring this architecture at a vastly larger scale than ever before, rivaling mammalian nervous systems, and developing programming environments that take advantage of them. Still, the detailed implementation, such as the use of analog circuits, differs between the projects, and it may be several years before their relative merits can be assessed.

Researchers have long recognized the extraordinary energy stinginess of biological computing, most clearly in a visionary 1990 paper by the California Institute of Technology (Caltech)’s Carver Mead that established the term “neuromorphic.” Yet industry’s steady success in scaling traditional technology kept the pressure off.”

[i] “Spiking neural networks (SNNs) fall into the third generation of neural network models, increasing the level of realism in a neural simulation. In addition to neuronal and synaptic state, SNNs also incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not fire at each propagation cycle (as it happens with typical multi-layer perceptron networks), but rather fire only when a membrane potential – an intrinsic quality of the neuron related to its membrane electrical charge – reaches a specific value. When a neuron fires, it generates a signal which travels to other neurons which, in turn, increase or decrease their potentials in accordance with this signal. In the context of spiking neural networks, the current activation level (modeled as some differential equation) is normally considered to be the neuron’s state, with incoming spikes pushing this value higher, and then either firing or decaying over time. Various coding methods exist for interpreting the outgoing spike train as a real-value number, either relying on the frequency of spikes, or the timing between spikes, to encode information.” From https://en.wikipedia.org/wiki/Spiking_neural_network.

[ii] For more on applications, see IBM paper, Cognitive Computing Commercialization: Boundary Objects for Communication, https://dl.dropboxusercontent.com/u/91714474/Papers/023.IDEMI’13_boundary%20objects_3.4.pdf?cm_mc_uid=86343320971914489086046&cm_mc_sid_50200000=1458418853, Presented at 3rd INT. CONF. ON INTEGRATION OF DESIGN, ENGINEERING & MANAGEMENT FOR INNOVATION, Porto, Portugal, 4-6th September 2013

[iii] Communications of the ACM, Neuromorphic Computing Gets Ready for the (Really) Big Time, http://cacm.acm.org/magazines/2014/6/175183-neuromorphic-computing-gets-ready-for-the-really-big-time/abstract

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This