The Scalability Dilemma and the Case for Decoupling

By Justin Y. Shi, Temple University

March 30, 2016

The need for extreme scale computing is driven by the seemingly forever fledgling Internet. In abstract, the entire network is already an extreme scale computing engine. The technical difficulty, however, is to harness the dispersed computing powers for a single purpose. An analogy to this would be to build an engine capable of harnessing the combustive power of elements to move people or things. The presence of such an engine could drive transformative changes in technology, society and the economy.

The first requirement for such an extreme scale computing engine is the ability to gain incrementally better performance and reliability while concurrently expanding in size. We expect more from this engine than we do from a sports car. The “cost of doing business” should only include oil changes, tire and bearing replacements, but not re-building the car when a tire bursts or the engine upgrades. Unlike sports cars, technically, the extreme scale computing engine should run faster and more reliably when it expands for solving a bigger problem. While the top deliverable performance of the engine must be capped by the aggregate of available capabilities, there should be no loss in an application’s reliability when expanding in size.

Reliable distributed computing is hard. A 1993 paper entitled “The Impossibility of Implementing Reliable Communication in the Face of Crashes”[i] drew a “line in the sand.” It was proved that given a pair of sender and receiver, reliable communication between them is impossible if either one or the other could crash arbitrarily. It follows immediately that any distributed or parallel application that depends on fixed program-processor bindings must face the increased risk of crashes when the application expands, namely the “scalability dilemma.”

ImpossibilityProof 800xThe corollary of the impossibility proof is that reliable failure detection is also impossible. Thus, fault detection/repair/reschedule schemes are technically flawed for extreme scale computing. In this context, “reliability” means “100% application reliability while the system affords greater than the minimal survivable resource set.” For any computing or communication application, the “minimal survivable resource set” includes “at least one viable resource at every critical path at the time of need.”

Ironically, the possibility of such a highly reliable system using faulty networks was also proved by the same authors[ii]. Today’s Internet is a feasibility study of the correctness of this proof. These two complementary studies somehow seem contradictory to most people. This confusion may be rooted in a widespread faulty assumption in distributed computing communities: the “virtual circuit.” It is widely taught and believed that a virtual circuit is “a reliable, lossless data transmission channel between two communicating programs.” Historically, this term was first created by the network communities to signify a clean “hand-off point” for computing communities. The trouble was that the computing professionals took the liberty to expand the virtual circuit definition to include the reliability of the communicating programs.

This was an unfortunate mistake. It crossed the “line in the sand.” This problem was quickly identified as the first fallacy – “the network is reliable” — in the “Eight Fallacies of Distributed Computing”[iii]. However, in the last three decades, the industry and research communities have continued to ignore the warning signs despite increasing service downtimes and data losses in today’s large scale distributed systems (including all mission critical applications and HPC applications).

The Stateless Parallel Processing (“SPP”) concept [iv]was conceived in the mid-1980s based on a practical requirement of a mission critical project called “Zodiac.” The requirement was very basic: Keep a distributed application running regardless partial component failures. It was inconceivable for national security to rely on any mission critical application that could crash on a single component failure. Technically speaking, mission critical programs and data must be completely decoupled from processing, communication and storage devices. Otherwise, any device failure can halt the entire application and expanding the processing infrastructure will inevitably result in a higher probability of service interruptions, data losses, and runaway maintenance costs. HPC applications are the first non-lethal applications to demonstrate these potentially disastrous consequences. The growing instabilities in large scale simulations have also already played a role in the investigation of the scientific computing reproducibility problems[v].

Methods for building completely decoupled applications are fundamentally different from those for “bare metal” applications. The first difference is in the design of Application Programming Interface (“API”). Technically, Remote Procedure Call (“RPC”), Message Passing Interface (“MPI”), share memory (“OpenMP”), and Remote Method Invocation (“RMI”) are all “bare metal”-inspired APIs. Applications built using these APIs force the runtime systems to generate fixed program-processor dependencies. They have crossed the “line in the sand.” The computing application scalability dilemma is unavoidable.

The <key, value=””>-based APIs, such as Hadoop, Spark, and Scality, aimed to relax the program/data-device dependency by allowing the runtime system to conduct failure detection/repair “magic.” These efforts have already shown significant scalability gains against “bare metal” approaches. Unfortunately, due to the influence of the “virtual circuit” concept, their runtime implementations have also crossed the “line in the sand.” The natural next step is to completely decouple devices from programs and data.

As the “Internet of Things” takes afoot, the “smart big sensing” challenge is on the horizon. In this context, an extreme scale computing engine is merely a necessity for survival. The existing distributed and parallel computing technologies are woefully inadequate.

Fundamentally, all electronics will fail in unexpected ways. “Bare metal” computing was important decades ago but detrimental to large scale computing. It is simply flawed for extreme scale computing.

Albert Einstein defined “Insanity” as doing “the same thing over and over again and expecting a different result”. Without a paradigm shift, we can continue to call anything “extreme scale” while secretly keeping the true extreme scale engine in our dreams.

References

[i] Alan Fekete, Nancy A. Lynch, Yishay Mansour, John Spinelli, “The Impossibility of Implementing Reliable Communication in the Face of Crashes,” Journal of the ACM, 1993.

[ii] John Spinelli, “Reliable Data Communication in Faulty Computer Networks.” Ph.D. dissertation. Dept. Elect. Eng. Comput. Sci., Massachusetts Institute of Technology, Cambridge, Mass., and MIT Laboratory for Information and Decision Systems report LIDS-TH-1882, June 1984.

[iii] Peter Deutsch, “Eight Fallacies of Distributed Computing,” http://www.ibiblio.org/xml/slides/acgnj/syndication/cache/Fallacies.html

[iv] Justin Shi, “Stateless Parallel Processing Prototype: Synergy”. https://github.com/jys673/Synergy30

[v] XSEDE 2014 Reproducibility Workshop Report, “Standing Together for Reproducibility in Large-Scale Computing”. https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-2de11113a40f

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ lar Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HP Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This