The Scalability Dilemma and the Case for Decoupling

By Justin Y. Shi, Temple University

March 30, 2016

The need for extreme scale computing is driven by the seemingly forever fledgling Internet. In abstract, the entire network is already an extreme scale computing engine. The technical difficulty, however, is to harness the dispersed computing powers for a single purpose. An analogy to this would be to build an engine capable of harnessing the combustive power of elements to move people or things. The presence of such an engine could drive transformative changes in technology, society and the economy.

The first requirement for such an extreme scale computing engine is the ability to gain incrementally better performance and reliability while concurrently expanding in size. We expect more from this engine than we do from a sports car. The “cost of doing business” should only include oil changes, tire and bearing replacements, but not re-building the car when a tire bursts or the engine upgrades. Unlike sports cars, technically, the extreme scale computing engine should run faster and more reliably when it expands for solving a bigger problem. While the top deliverable performance of the engine must be capped by the aggregate of available capabilities, there should be no loss in an application’s reliability when expanding in size.

Reliable distributed computing is hard. A 1993 paper entitled “The Impossibility of Implementing Reliable Communication in the Face of Crashes”[i] drew a “line in the sand.” It was proved that given a pair of sender and receiver, reliable communication between them is impossible if either one or the other could crash arbitrarily. It follows immediately that any distributed or parallel application that depends on fixed program-processor bindings must face the increased risk of crashes when the application expands, namely the “scalability dilemma.”

ImpossibilityProof 800xThe corollary of the impossibility proof is that reliable failure detection is also impossible. Thus, fault detection/repair/reschedule schemes are technically flawed for extreme scale computing. In this context, “reliability” means “100% application reliability while the system affords greater than the minimal survivable resource set.” For any computing or communication application, the “minimal survivable resource set” includes “at least one viable resource at every critical path at the time of need.”

Ironically, the possibility of such a highly reliable system using faulty networks was also proved by the same authors[ii]. Today’s Internet is a feasibility study of the correctness of this proof. These two complementary studies somehow seem contradictory to most people. This confusion may be rooted in a widespread faulty assumption in distributed computing communities: the “virtual circuit.” It is widely taught and believed that a virtual circuit is “a reliable, lossless data transmission channel between two communicating programs.” Historically, this term was first created by the network communities to signify a clean “hand-off point” for computing communities. The trouble was that the computing professionals took the liberty to expand the virtual circuit definition to include the reliability of the communicating programs.

This was an unfortunate mistake. It crossed the “line in the sand.” This problem was quickly identified as the first fallacy – “the network is reliable” — in the “Eight Fallacies of Distributed Computing”[iii]. However, in the last three decades, the industry and research communities have continued to ignore the warning signs despite increasing service downtimes and data losses in today’s large scale distributed systems (including all mission critical applications and HPC applications).

The Stateless Parallel Processing (“SPP”) concept [iv]was conceived in the mid-1980s based on a practical requirement of a mission critical project called “Zodiac.” The requirement was very basic: Keep a distributed application running regardless partial component failures. It was inconceivable for national security to rely on any mission critical application that could crash on a single component failure. Technically speaking, mission critical programs and data must be completely decoupled from processing, communication and storage devices. Otherwise, any device failure can halt the entire application and expanding the processing infrastructure will inevitably result in a higher probability of service interruptions, data losses, and runaway maintenance costs. HPC applications are the first non-lethal applications to demonstrate these potentially disastrous consequences. The growing instabilities in large scale simulations have also already played a role in the investigation of the scientific computing reproducibility problems[v].

Methods for building completely decoupled applications are fundamentally different from those for “bare metal” applications. The first difference is in the design of Application Programming Interface (“API”). Technically, Remote Procedure Call (“RPC”), Message Passing Interface (“MPI”), share memory (“OpenMP”), and Remote Method Invocation (“RMI”) are all “bare metal”-inspired APIs. Applications built using these APIs force the runtime systems to generate fixed program-processor dependencies. They have crossed the “line in the sand.” The computing application scalability dilemma is unavoidable.

The <key, value=””>-based APIs, such as Hadoop, Spark, and Scality, aimed to relax the program/data-device dependency by allowing the runtime system to conduct failure detection/repair “magic.” These efforts have already shown significant scalability gains against “bare metal” approaches. Unfortunately, due to the influence of the “virtual circuit” concept, their runtime implementations have also crossed the “line in the sand.” The natural next step is to completely decouple devices from programs and data.

As the “Internet of Things” takes afoot, the “smart big sensing” challenge is on the horizon. In this context, an extreme scale computing engine is merely a necessity for survival. The existing distributed and parallel computing technologies are woefully inadequate.

Fundamentally, all electronics will fail in unexpected ways. “Bare metal” computing was important decades ago but detrimental to large scale computing. It is simply flawed for extreme scale computing.

Albert Einstein defined “Insanity” as doing “the same thing over and over again and expecting a different result”. Without a paradigm shift, we can continue to call anything “extreme scale” while secretly keeping the true extreme scale engine in our dreams.

References

[i] Alan Fekete, Nancy A. Lynch, Yishay Mansour, John Spinelli, “The Impossibility of Implementing Reliable Communication in the Face of Crashes,” Journal of the ACM, 1993.

[ii] John Spinelli, “Reliable Data Communication in Faulty Computer Networks.” Ph.D. dissertation. Dept. Elect. Eng. Comput. Sci., Massachusetts Institute of Technology, Cambridge, Mass., and MIT Laboratory for Information and Decision Systems report LIDS-TH-1882, June 1984.

[iii] Peter Deutsch, “Eight Fallacies of Distributed Computing,” http://www.ibiblio.org/xml/slides/acgnj/syndication/cache/Fallacies.html

[iv] Justin Shi, “Stateless Parallel Processing Prototype: Synergy”. https://github.com/jys673/Synergy30

[v] XSEDE 2014 Reproducibility Workshop Report, “Standing Together for Reproducibility in Large-Scale Computing”. https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-2de11113a40f

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This