The Scalability Dilemma and the Case for Decoupling

By Justin Y. Shi, Temple University

March 30, 2016

The need for extreme scale computing is driven by the seemingly forever fledgling Internet. In abstract, the entire network is already an extreme scale computing engine. The technical difficulty, however, is to harness the dispersed computing powers for a single purpose. An analogy to this would be to build an engine capable of harnessing the combustive power of elements to move people or things. The presence of such an engine could drive transformative changes in technology, society and the economy.

The first requirement for such an extreme scale computing engine is the ability to gain incrementally better performance and reliability while concurrently expanding in size. We expect more from this engine than we do from a sports car. The “cost of doing business” should only include oil changes, tire and bearing replacements, but not re-building the car when a tire bursts or the engine upgrades. Unlike sports cars, technically, the extreme scale computing engine should run faster and more reliably when it expands for solving a bigger problem. While the top deliverable performance of the engine must be capped by the aggregate of available capabilities, there should be no loss in an application’s reliability when expanding in size.

Reliable distributed computing is hard. A 1993 paper entitled “The Impossibility of Implementing Reliable Communication in the Face of Crashes”[i] drew a “line in the sand.” It was proved that given a pair of sender and receiver, reliable communication between them is impossible if either one or the other could crash arbitrarily. It follows immediately that any distributed or parallel application that depends on fixed program-processor bindings must face the increased risk of crashes when the application expands, namely the “scalability dilemma.”

ImpossibilityProof 800xThe corollary of the impossibility proof is that reliable failure detection is also impossible. Thus, fault detection/repair/reschedule schemes are technically flawed for extreme scale computing. In this context, “reliability” means “100% application reliability while the system affords greater than the minimal survivable resource set.” For any computing or communication application, the “minimal survivable resource set” includes “at least one viable resource at every critical path at the time of need.”

Ironically, the possibility of such a highly reliable system using faulty networks was also proved by the same authors[ii]. Today’s Internet is a feasibility study of the correctness of this proof. These two complementary studies somehow seem contradictory to most people. This confusion may be rooted in a widespread faulty assumption in distributed computing communities: the “virtual circuit.” It is widely taught and believed that a virtual circuit is “a reliable, lossless data transmission channel between two communicating programs.” Historically, this term was first created by the network communities to signify a clean “hand-off point” for computing communities. The trouble was that the computing professionals took the liberty to expand the virtual circuit definition to include the reliability of the communicating programs.

This was an unfortunate mistake. It crossed the “line in the sand.” This problem was quickly identified as the first fallacy – “the network is reliable” — in the “Eight Fallacies of Distributed Computing”[iii]. However, in the last three decades, the industry and research communities have continued to ignore the warning signs despite increasing service downtimes and data losses in today’s large scale distributed systems (including all mission critical applications and HPC applications).

The Stateless Parallel Processing (“SPP”) concept [iv]was conceived in the mid-1980s based on a practical requirement of a mission critical project called “Zodiac.” The requirement was very basic: Keep a distributed application running regardless partial component failures. It was inconceivable for national security to rely on any mission critical application that could crash on a single component failure. Technically speaking, mission critical programs and data must be completely decoupled from processing, communication and storage devices. Otherwise, any device failure can halt the entire application and expanding the processing infrastructure will inevitably result in a higher probability of service interruptions, data losses, and runaway maintenance costs. HPC applications are the first non-lethal applications to demonstrate these potentially disastrous consequences. The growing instabilities in large scale simulations have also already played a role in the investigation of the scientific computing reproducibility problems[v].

Methods for building completely decoupled applications are fundamentally different from those for “bare metal” applications. The first difference is in the design of Application Programming Interface (“API”). Technically, Remote Procedure Call (“RPC”), Message Passing Interface (“MPI”), share memory (“OpenMP”), and Remote Method Invocation (“RMI”) are all “bare metal”-inspired APIs. Applications built using these APIs force the runtime systems to generate fixed program-processor dependencies. They have crossed the “line in the sand.” The computing application scalability dilemma is unavoidable.

The <key, value=””>-based APIs, such as Hadoop, Spark, and Scality, aimed to relax the program/data-device dependency by allowing the runtime system to conduct failure detection/repair “magic.” These efforts have already shown significant scalability gains against “bare metal” approaches. Unfortunately, due to the influence of the “virtual circuit” concept, their runtime implementations have also crossed the “line in the sand.” The natural next step is to completely decouple devices from programs and data.

As the “Internet of Things” takes afoot, the “smart big sensing” challenge is on the horizon. In this context, an extreme scale computing engine is merely a necessity for survival. The existing distributed and parallel computing technologies are woefully inadequate.

Fundamentally, all electronics will fail in unexpected ways. “Bare metal” computing was important decades ago but detrimental to large scale computing. It is simply flawed for extreme scale computing.

Albert Einstein defined “Insanity” as doing “the same thing over and over again and expecting a different result”. Without a paradigm shift, we can continue to call anything “extreme scale” while secretly keeping the true extreme scale engine in our dreams.

References

[i] Alan Fekete, Nancy A. Lynch, Yishay Mansour, John Spinelli, “The Impossibility of Implementing Reliable Communication in the Face of Crashes,” Journal of the ACM, 1993.

[ii] John Spinelli, “Reliable Data Communication in Faulty Computer Networks.” Ph.D. dissertation. Dept. Elect. Eng. Comput. Sci., Massachusetts Institute of Technology, Cambridge, Mass., and MIT Laboratory for Information and Decision Systems report LIDS-TH-1882, June 1984.

[iii] Peter Deutsch, “Eight Fallacies of Distributed Computing,” http://www.ibiblio.org/xml/slides/acgnj/syndication/cache/Fallacies.html

[iv] Justin Shi, “Stateless Parallel Processing Prototype: Synergy”. https://github.com/jys673/Synergy30

[v] XSEDE 2014 Reproducibility Workshop Report, “Standing Together for Reproducibility in Large-Scale Computing”. https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-2de11113a40f

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire