The Scalability Dilemma and the Case for Decoupling

By Justin Y. Shi, Temple University

March 30, 2016

The need for extreme scale computing is driven by the seemingly forever fledgling Internet. In abstract, the entire network is already an extreme scale computing engine. The technical difficulty, however, is to harness the dispersed computing powers for a single purpose. An analogy to this would be to build an engine capable of harnessing the combustive power of elements to move people or things. The presence of such an engine could drive transformative changes in technology, society and the economy.

The first requirement for such an extreme scale computing engine is the ability to gain incrementally better performance and reliability while concurrently expanding in size. We expect more from this engine than we do from a sports car. The “cost of doing business” should only include oil changes, tire and bearing replacements, but not re-building the car when a tire bursts or the engine upgrades. Unlike sports cars, technically, the extreme scale computing engine should run faster and more reliably when it expands for solving a bigger problem. While the top deliverable performance of the engine must be capped by the aggregate of available capabilities, there should be no loss in an application’s reliability when expanding in size.

Reliable distributed computing is hard. A 1993 paper entitled “The Impossibility of Implementing Reliable Communication in the Face of Crashes”[i] drew a “line in the sand.” It was proved that given a pair of sender and receiver, reliable communication between them is impossible if either one or the other could crash arbitrarily. It follows immediately that any distributed or parallel application that depends on fixed program-processor bindings must face the increased risk of crashes when the application expands, namely the “scalability dilemma.”

ImpossibilityProof 800xThe corollary of the impossibility proof is that reliable failure detection is also impossible. Thus, fault detection/repair/reschedule schemes are technically flawed for extreme scale computing. In this context, “reliability” means “100% application reliability while the system affords greater than the minimal survivable resource set.” For any computing or communication application, the “minimal survivable resource set” includes “at least one viable resource at every critical path at the time of need.”

Ironically, the possibility of such a highly reliable system using faulty networks was also proved by the same authors[ii]. Today’s Internet is a feasibility study of the correctness of this proof. These two complementary studies somehow seem contradictory to most people. This confusion may be rooted in a widespread faulty assumption in distributed computing communities: the “virtual circuit.” It is widely taught and believed that a virtual circuit is “a reliable, lossless data transmission channel between two communicating programs.” Historically, this term was first created by the network communities to signify a clean “hand-off point” for computing communities. The trouble was that the computing professionals took the liberty to expand the virtual circuit definition to include the reliability of the communicating programs.

This was an unfortunate mistake. It crossed the “line in the sand.” This problem was quickly identified as the first fallacy – “the network is reliable” — in the “Eight Fallacies of Distributed Computing”[iii]. However, in the last three decades, the industry and research communities have continued to ignore the warning signs despite increasing service downtimes and data losses in today’s large scale distributed systems (including all mission critical applications and HPC applications).

The Stateless Parallel Processing (“SPP”) concept [iv]was conceived in the mid-1980s based on a practical requirement of a mission critical project called “Zodiac.” The requirement was very basic: Keep a distributed application running regardless partial component failures. It was inconceivable for national security to rely on any mission critical application that could crash on a single component failure. Technically speaking, mission critical programs and data must be completely decoupled from processing, communication and storage devices. Otherwise, any device failure can halt the entire application and expanding the processing infrastructure will inevitably result in a higher probability of service interruptions, data losses, and runaway maintenance costs. HPC applications are the first non-lethal applications to demonstrate these potentially disastrous consequences. The growing instabilities in large scale simulations have also already played a role in the investigation of the scientific computing reproducibility problems[v].

Methods for building completely decoupled applications are fundamentally different from those for “bare metal” applications. The first difference is in the design of Application Programming Interface (“API”). Technically, Remote Procedure Call (“RPC”), Message Passing Interface (“MPI”), share memory (“OpenMP”), and Remote Method Invocation (“RMI”) are all “bare metal”-inspired APIs. Applications built using these APIs force the runtime systems to generate fixed program-processor dependencies. They have crossed the “line in the sand.” The computing application scalability dilemma is unavoidable.

The <key, value=””>-based APIs, such as Hadoop, Spark, and Scality, aimed to relax the program/data-device dependency by allowing the runtime system to conduct failure detection/repair “magic.” These efforts have already shown significant scalability gains against “bare metal” approaches. Unfortunately, due to the influence of the “virtual circuit” concept, their runtime implementations have also crossed the “line in the sand.” The natural next step is to completely decouple devices from programs and data.

As the “Internet of Things” takes afoot, the “smart big sensing” challenge is on the horizon. In this context, an extreme scale computing engine is merely a necessity for survival. The existing distributed and parallel computing technologies are woefully inadequate.

Fundamentally, all electronics will fail in unexpected ways. “Bare metal” computing was important decades ago but detrimental to large scale computing. It is simply flawed for extreme scale computing.

Albert Einstein defined “Insanity” as doing “the same thing over and over again and expecting a different result”. Without a paradigm shift, we can continue to call anything “extreme scale” while secretly keeping the true extreme scale engine in our dreams.

References

[i] Alan Fekete, Nancy A. Lynch, Yishay Mansour, John Spinelli, “The Impossibility of Implementing Reliable Communication in the Face of Crashes,” Journal of the ACM, 1993.

[ii] John Spinelli, “Reliable Data Communication in Faulty Computer Networks.” Ph.D. dissertation. Dept. Elect. Eng. Comput. Sci., Massachusetts Institute of Technology, Cambridge, Mass., and MIT Laboratory for Information and Decision Systems report LIDS-TH-1882, June 1984.

[iii] Peter Deutsch, “Eight Fallacies of Distributed Computing,” http://www.ibiblio.org/xml/slides/acgnj/syndication/cache/Fallacies.html

[iv] Justin Shi, “Stateless Parallel Processing Prototype: Synergy”. https://github.com/jys673/Synergy30

[v] XSEDE 2014 Reproducibility Workshop Report, “Standing Together for Reproducibility in Large-Scale Computing”. https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-2de11113a40f

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Royalty-free stock illustration ID: 1675260034

Solving Heterogeneous Programming Challenges with SYCL

December 8, 2021

In the first of a series of guest posts on heterogenous computing, James Reinders, who returned to Intel last year after a short "retirement," considers how SYCL will contribute to a heterogeneous future for C++. Reinde Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Quantum Origin, a service to deliver “completely unpredicta Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

AWS Solution Channel

Introducing AWS HPC Connector for NICE EnginFrame

HPC customers regularly tell us about their excitement when they’re starting to use the cloud for the first time. In conversations, we always want to dig a bit deeper to find out how we can improve those initial experiences and deliver on the potential they see. Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

Royalty-free stock illustration ID: 1675260034

Solving Heterogeneous Programming Challenges with SYCL

December 8, 2021

In the first of a series of guest posts on heterogenous computing, James Reinders, who returned to Intel last year after a short "retirement," considers how SYC Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Q Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire