NVIDIA Unleashes Monster Pascal GPU Card at GTC16

By Tiffany Trader

April 5, 2016

Earlier today (Tuesday) at the seventh-annual GPU Technology Conference (GTC) in San Jose, Calif., NVIDIA revealed its first Pascal-architecture based GPU card, the P100, calling it “the most advanced accelerator ever built.” The P100 is based on the NVIDIA Pascal GP100 GPU — a successor to the Kepler GK110/210 — and is aimed squarely at HPC, technical computing and deep learning workloads.

Packing a whopping 5.3 teraflops of double-precision floating point performance, the P100 is NVIDIA’s most performant chip to date. And with 15.3 billion transistors, it’s also the largest GPU that NVIDIA has ever made in spite of it being built on TSMC’s 16nm FinFET manufacturing process.

The P100 is the flagship Pascal architecture offering, and it’s also the first product to implement the heralded HBM2 and NVLink technologies. During his keynote address, NVIDIA CEO Jen-Hsun Huang said the chip had entered volume production and would ship by first quarter 2017. Partners Dell, HPE, Cray and IBM are expected to come out with Pascal-equipped servers by the end of 2016, with production availability in early 2017.

Huang also showed how the new Pascal GPU fits in with the Tesla family. The new DGX-1 deep learning supercomputer is shown all the way to the right. With a price tag of $129,000 the DGX-1 puts the equivalent of 250 servers in a box, said Huang. It packs eight of the new P100 GPUs and 7 TB of SSD storage and can pump out up to 170 teraflops of half-precision floating point performance.

GTC16 Tesla Family full 1400x

In a separate presentation, Lars Nyland, NVIDIA senior architect, and Mark Harris, chief technologist of GPU computing software at NVIDIA, provided a deep dive into the new architecture. Before unpacking the new features and specs, the duo looked at some real-world performance speedups for the P100. This chart depicts the benefits of the faster GPU and the high-bandwidth NVLink interconnect technology.

NVIDIA Tesla P100 chart

GPU Breakdown

The cradle for computation in Tesla GPUs is the SM, the streaming multiprocessor. The SM creates, manages, schedules and executes instructions from many threads in parallel. The Tesla GP100 GPU has 60 SMs. For the P100, NVIDIA has enabled 56 of them for a total of 3,584 CUDA (enabled) cores. Memory bandwidth is 720 GB/s and the memory size is 16 GB.

There are 64 CUDA cores in the GP100 SM, which at first seems small in comparison to Maxwell’s SM with 128, but there is a reason. To arrive at the GP100 SM, NVIDIA started with a Maxwell SM and chopped it in half.

“The cores are your most important resource on the SM and if you don’t use them in any particular clock cycle, you are wasting your chip,” explained Nyland. “What we wanted to do was improve the efficiency to make them be used more often. We started with the Maxwell SM and we cut it in half – that gives us two P100 SMs. We could have stopped here, but we added the 64-bit floating point double precision cores and then we doubled the occupancy, we doubled the number of warps per P100 SM so that the occupancy went back to being equivalent to Maxwell SM. Then we also doubled the register files and finally we duplicated the shared memory – so now we have two SMs with 64 cores each from what we started with, one Maxwell 128 core SM.”

Pascal GP100_SM_diagramThe net effect, the NVIDIA reps go on to explain, is that the GP100 SM has more resources per core. It has twice the number of registers more core, 1.33x more shared memory capacity, 2x shared memory bandwidth and twice as many warps resident at the same time on the SMs.

The overall impact is higher instruction throughput leading to higher utilization when running codes. “There’s a big effort that’s gone into making sure you get more value out of every core,” said Harris.

“We’ve put more resources around each core” Nyland added, “By having more warps ready, the scheduler has more to choose from and so it has more opportunities to run something than it would if there were fewer warps. By having more register, we can have higher occupancy. And then having a shared memory, we have double the bandwidth and less contention, less cores shared with the shared memory so there is more access. All of this adds up to more utilization of the cores, which is the real goal.”

Floating point is cited as another critical resource. The three sizes – half-precision, single-precision and double-precision — all fit the IEEE standard. The peak speed of 5.2 teraflops double-precision performance doubles to 10.6 teraflops running in single-precision floating point mode. Double it again, and you get 21 peak teraflops of half-precision floating point performance — another first.

“GPUs have used half-precision for at least a dozen years as a storage mechanism to save space — for textures — but we’ve never built an arithmetic pipeline to implement the 16-bit floating point directly, we’ve always converted it,” Nyland said. “What we’ve done is left it in its native size and then pair it together and execute an instruction on a pair of values every clock – this is compared to the single-precision where we execute one instruction every clock and the double-precision runs at one every two clocks.”

NVIDIA has also added atomic addition for 64-bit floating point values.

GTC16 Pascal Tesla P100 comparison 700x

NVLink

One of the most important new features that debuted with the Pascal architecture is NVLink, NVIDIA’s communications protocol that allows high-speed communication from one GPU to another and to future NVLink-enabled CPUs as well. The point-to-point interconnect is said to allow data sharing at rates five to 12 times faster than traditional PCI Express Gen 3 (PCIe). And its compatibility with the GPU ISA means it can support shared memory multiprocessing workloads.

Currently implemented in Tesla P100 accelerator boards and Pascal GP100 GPUs, NVLink supports reads, writes and atomics between GPUs. There are four NVLinks on every P100 GPU. A single link supports up to 40 GB/sec of bidirectional bandwidth between the endpoints and links can be connected in a gang to enable an aggregate maximum theoretical bandwidth of 160 GB/sec bidirectional bandwidth per P100. The ability to have four or eight GPUs all sharing data with each other is the real benefit of NVlink, said Harris. “We can build really powerful machines and still program them with familiar programming models,” he added.

NVIDIA NVLink 8-GPU-hybrid-cube-mesh 800x

NVLink can also be coupled with an NVLink enabled CPU, like the future POWER CPU that IBM has announced. In this configuration, four P100 GPUs can be fully connected in a gang and they’ll have a link that connects to the CPU. The GPUs will thus be able to access all the memory of the other GPUs and CPU memory.

High Bandwidth Memory 2

The other major first for P100 is its use of HBM2 stacked memory. This technology enables multiple layers of DRAM components to be integrated vertically on the package along with the GPU. The P100 accelerators have four 4-die HBM2 stacks, for a total of 16 GB of memory, and 720 GB/s peak bandwidth.

With HBM2, error correcting code (ECC) functionality is free, the NVIDIA reps noted. What this means is there is no capacity taken away and there’s no processing performance penalty associated with using ECC. This wasn’t the case with the GDDR memories. For those, NVIDIA implemented an ECC scheme that used some of the memory for the ECC bit data and they had to create that data themselves, which had a slight penalty.

Unified Memory

Pascal has also expanded on the unified memory features of CUDA 6 by adding support for large address spaces and page faulting capability. Because Kepler and Maxwell weren’t allowed to page fault, the developer was only allowed to allocate unified memory up to the size of the GPU’s physical memory. Also, because the GPU can page fault, when you launch a kernel, any pages that were migrated to the CPU need to be migrated back to the GPU before the kernel can run – this translates to launch overhead. This meant that on Kepler and Maxwell the CPU and GPU code could not simultaneously access the same memory allocations.

“With the page migration engine, the larger address space and the ability to page fault, you now get all of these things you couldn’t do before,” explained Nyland. “You can allocate beyond the size of the GPU memory up to the physical system memory size, which means you can oversubscribe the GPU memory and do the processing of large scale models out of core. You can now simultaneously access those allocations from the CPU and GPU without fatal errors. This means you have much finer-grained communication between the processors but you do still have to take care of proper synchronization so you don’t have race conditions. You can even do unified memory atomic operations, and across NVLink these are native.”

In the future, on systems that support it, Pascal enables the possibility of using the system allocator to allocate unified memory. In this case, malloc would be able to pass those pointers to CPU or GPU and share that data. NVIDIA is working with Red Hat and the Linux community on the operating system changes that are necessary to unlock this functionality, reported Nyland.

More to come…

This was the first major walk-through of the Pascal architecture and GPU launch, however that’s by no means all of it. NVIDIA will be discussing other GP100 features — such as preemption and a larger L2 cache — in the days and weeks to come. A white paper is said to be forthcoming and we will link to it here when it’s available. For now, if you are hungry for more Pascal information, check out this blog post by Mark Harris, which reprises the content of today’s deep dive session.

Pricing for the Tesla P100 is not yet available and shipping is still about a year away, but there is a way to get your hands on one. The GPUs are available for $16,125 each in quantities of eight — if you spring for the DGX-1. NVIDIA also makes select hardware available to its joint lab partners and its early access program partners.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM, NVIDIA, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, NVIDIA, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This