NVIDIA Unleashes Monster Pascal GPU Card at GTC16

By Tiffany Trader

April 5, 2016

Earlier today (Tuesday) at the seventh-annual GPU Technology Conference (GTC) in San Jose, Calif., NVIDIA revealed its first Pascal-architecture based GPU card, the P100, calling it “the most advanced accelerator ever built.” The P100 is based on the NVIDIA Pascal GP100 GPU — a successor to the Kepler GK110/210 — and is aimed squarely at HPC, technical computing and deep learning workloads.

Packing a whopping 5.3 teraflops of double-precision floating point performance, the P100 is NVIDIA’s most performant chip to date. And with 15.3 billion transistors, it’s also the largest GPU that NVIDIA has ever made in spite of it being built on TSMC’s 16nm FinFET manufacturing process.

The P100 is the flagship Pascal architecture offering, and it’s also the first product to implement the heralded HBM2 and NVLink technologies. During his keynote address, NVIDIA CEO Jen-Hsun Huang said the chip had entered volume production and would ship by first quarter 2017. Partners Dell, HPE, Cray and IBM are expected to come out with Pascal-equipped servers by the end of 2016, with production availability in early 2017.

Huang also showed how the new Pascal GPU fits in with the Tesla family. The new DGX-1 deep learning supercomputer is shown all the way to the right. With a price tag of $129,000 the DGX-1 puts the equivalent of 250 servers in a box, said Huang. It packs eight of the new P100 GPUs and 7 TB of SSD storage and can pump out up to 170 teraflops of half-precision floating point performance.

GTC16 Tesla Family full 1400x

In a separate presentation, Lars Nyland, NVIDIA senior architect, and Mark Harris, chief technologist of GPU computing software at NVIDIA, provided a deep dive into the new architecture. Before unpacking the new features and specs, the duo looked at some real-world performance speedups for the P100. This chart depicts the benefits of the faster GPU and the high-bandwidth NVLink interconnect technology.

NVIDIA Tesla P100 chart

GPU Breakdown

The cradle for computation in Tesla GPUs is the SM, the streaming multiprocessor. The SM creates, manages, schedules and executes instructions from many threads in parallel. The Tesla GP100 GPU has 60 SMs. For the P100, NVIDIA has enabled 56 of them for a total of 3,584 CUDA (enabled) cores. Memory bandwidth is 720 GB/s and the memory size is 16 GB.

There are 64 CUDA cores in the GP100 SM, which at first seems small in comparison to Maxwell’s SM with 128, but there is a reason. To arrive at the GP100 SM, NVIDIA started with a Maxwell SM and chopped it in half.

“The cores are your most important resource on the SM and if you don’t use them in any particular clock cycle, you are wasting your chip,” explained Nyland. “What we wanted to do was improve the efficiency to make them be used more often. We started with the Maxwell SM and we cut it in half – that gives us two P100 SMs. We could have stopped here, but we added the 64-bit floating point double precision cores and then we doubled the occupancy, we doubled the number of warps per P100 SM so that the occupancy went back to being equivalent to Maxwell SM. Then we also doubled the register files and finally we duplicated the shared memory – so now we have two SMs with 64 cores each from what we started with, one Maxwell 128 core SM.”

Pascal GP100_SM_diagramThe net effect, the NVIDIA reps go on to explain, is that the GP100 SM has more resources per core. It has twice the number of registers more core, 1.33x more shared memory capacity, 2x shared memory bandwidth and twice as many warps resident at the same time on the SMs.

The overall impact is higher instruction throughput leading to higher utilization when running codes. “There’s a big effort that’s gone into making sure you get more value out of every core,” said Harris.

“We’ve put more resources around each core” Nyland added, “By having more warps ready, the scheduler has more to choose from and so it has more opportunities to run something than it would if there were fewer warps. By having more register, we can have higher occupancy. And then having a shared memory, we have double the bandwidth and less contention, less cores shared with the shared memory so there is more access. All of this adds up to more utilization of the cores, which is the real goal.”

Floating point is cited as another critical resource. The three sizes – half-precision, single-precision and double-precision — all fit the IEEE standard. The peak speed of 5.2 teraflops double-precision performance doubles to 10.6 teraflops running in single-precision floating point mode. Double it again, and you get 21 peak teraflops of half-precision floating point performance — another first.

“GPUs have used half-precision for at least a dozen years as a storage mechanism to save space — for textures — but we’ve never built an arithmetic pipeline to implement the 16-bit floating point directly, we’ve always converted it,” Nyland said. “What we’ve done is left it in its native size and then pair it together and execute an instruction on a pair of values every clock – this is compared to the single-precision where we execute one instruction every clock and the double-precision runs at one every two clocks.”

NVIDIA has also added atomic addition for 64-bit floating point values.

GTC16 Pascal Tesla P100 comparison 700x

NVLink

One of the most important new features that debuted with the Pascal architecture is NVLink, NVIDIA’s communications protocol that allows high-speed communication from one GPU to another and to future NVLink-enabled CPUs as well. The point-to-point interconnect is said to allow data sharing at rates five to 12 times faster than traditional PCI Express Gen 3 (PCIe). And its compatibility with the GPU ISA means it can support shared memory multiprocessing workloads.

Currently implemented in Tesla P100 accelerator boards and Pascal GP100 GPUs, NVLink supports reads, writes and atomics between GPUs. There are four NVLinks on every P100 GPU. A single link supports up to 40 GB/sec of bidirectional bandwidth between the endpoints and links can be connected in a gang to enable an aggregate maximum theoretical bandwidth of 160 GB/sec bidirectional bandwidth per P100. The ability to have four or eight GPUs all sharing data with each other is the real benefit of NVlink, said Harris. “We can build really powerful machines and still program them with familiar programming models,” he added.

NVIDIA NVLink 8-GPU-hybrid-cube-mesh 800x

NVLink can also be coupled with an NVLink enabled CPU, like the future POWER CPU that IBM has announced. In this configuration, four P100 GPUs can be fully connected in a gang and they’ll have a link that connects to the CPU. The GPUs will thus be able to access all the memory of the other GPUs and CPU memory.

High Bandwidth Memory 2

The other major first for P100 is its use of HBM2 stacked memory. This technology enables multiple layers of DRAM components to be integrated vertically on the package along with the GPU. The P100 accelerators have four 4-die HBM2 stacks, for a total of 16 GB of memory, and 720 GB/s peak bandwidth.

With HBM2, error correcting code (ECC) functionality is free, the NVIDIA reps noted. What this means is there is no capacity taken away and there’s no processing performance penalty associated with using ECC. This wasn’t the case with the GDDR memories. For those, NVIDIA implemented an ECC scheme that used some of the memory for the ECC bit data and they had to create that data themselves, which had a slight penalty.

Unified Memory

Pascal has also expanded on the unified memory features of CUDA 6 by adding support for large address spaces and page faulting capability. Because Kepler and Maxwell weren’t allowed to page fault, the developer was only allowed to allocate unified memory up to the size of the GPU’s physical memory. Also, because the GPU can page fault, when you launch a kernel, any pages that were migrated to the CPU need to be migrated back to the GPU before the kernel can run – this translates to launch overhead. This meant that on Kepler and Maxwell the CPU and GPU code could not simultaneously access the same memory allocations.

“With the page migration engine, the larger address space and the ability to page fault, you now get all of these things you couldn’t do before,” explained Nyland. “You can allocate beyond the size of the GPU memory up to the physical system memory size, which means you can oversubscribe the GPU memory and do the processing of large scale models out of core. You can now simultaneously access those allocations from the CPU and GPU without fatal errors. This means you have much finer-grained communication between the processors but you do still have to take care of proper synchronization so you don’t have race conditions. You can even do unified memory atomic operations, and across NVLink these are native.”

In the future, on systems that support it, Pascal enables the possibility of using the system allocator to allocate unified memory. In this case, malloc would be able to pass those pointers to CPU or GPU and share that data. NVIDIA is working with Red Hat and the Linux community on the operating system changes that are necessary to unlock this functionality, reported Nyland.

More to come…

This was the first major walk-through of the Pascal architecture and GPU launch, however that’s by no means all of it. NVIDIA will be discussing other GP100 features — such as preemption and a larger L2 cache — in the days and weeks to come. A white paper is said to be forthcoming and we will link to it here when it’s available. For now, if you are hungry for more Pascal information, check out this blog post by Mark Harris, which reprises the content of today’s deep dive session.

Pricing for the Tesla P100 is not yet available and shipping is still about a year away, but there is a way to get your hands on one. The GPUs are available for $16,125 each in quantities of eight — if you spring for the DGX-1. NVIDIA also makes select hardware available to its joint lab partners and its early access program partners.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the training and inference performance of systems that are availa Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

SC21 Keynote: Internet Pioneer Vint Cerf on Shakespeare, Chatbots, and Being Human

November 17, 2021

Unlike the deep technical dives of many SC keynotes, Internet pioneer Vint Cerf steered clear of the trenches and took leisurely stroll through a range of human-machine interactions, touching on ML’s growing capabilities while noting potholes to be avoided if possible. Cerf, of course, is co-designer with Bob Kahn of the TCP/IP protocols and architecture of the internet. He’s heralded... Read more…

France’s Jean Zay Supercomputer Boosts AI, HPC Research with Influx of A100 80GB GPUs

November 17, 2021

Since coming online in the fall of 2019 in Paris, the Jean Zay supercomputer has been one of Europe’s most powerful supercomputers available to HPC and AI researchers. And now, through the addition of new Nvidia A100 80GB GPUs and other hardware, the Jean Zay will soon offer double the compute capacity it offers for AI and HPC research, according to GENCI... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire