Europe’s Fastest Supercomputer to Get Pascal GPU Upgrade

By Tiffany Trader and John Russell

April 6, 2016

Already Europe’s fastest supercomputer at 7.8 petaflops, the Piz Daint (hybrid CPU/GPU Cray XC30) at the Swiss National Computing Center (CSCS) will double its performance with a massive upgrade that involves switching to NVIDIA’s newest Pascal GPU architecture and merging with Piz Dora (Cray XC40), a smaller CPU-based machine. The announcement was made at GTC16 yesterday. Last November Piz Daint placed seventh on the TOP500 list.

Plans call for 5,200 NVIDIA K20xs to be replaced by 4,500 Pascal GPUs – which version hasn’t been decided. Also, the Intel processors will be upgraded from Sandy Bridge to Haswell architecture. When completed, the new combined system, all on a single fabric, will keep the Piz Daint name and provide users with two types of compute nodes: hybrid CPU-GPU and CPU-only nodes. Although slightly reduced in physical size, Piz Daint will be more powerful and flexible allowing simulations or data analyses to be scaled to a few nodes or thousands of nodes.

“We are taking advantage of NVIDIA GPUs to significantly accelerate simulations in such diverse areas as cosmology, materials science, seismology and climatology,” said Thomas Schulthess, professor of computational physics at ETH Zurich and director of CSCS. “Tesla accelerators represent a leap forward in computing, allowing our researchers to solve larger, more complex problems that are currently out of reach in a host of fields.”

Pascal GPUs feature a number of breakthrough technologies, including second-generation High Bandwidth Memory (HBM2) that delivers three times higher bandwidth than the previous generation architecture, and 16nm FinFET technology for unprecedented energy efficiency.

NVIDIA Tesla P100 frontPiz Daint will also incorporate Cray’s DataWarp technology. DataWarp’s so-called Burst Buffer mode quadruples the effective bandwidth for long-term storage; in other words, data is input to and output from storage far more quickly. It paves the way for analyzing millions of small, unstructured files. Consequently, Piz Daint will be able to transfer initial results to a specialized area of the supercomputer for analysis while calculations are still under way.

The upgraded machine will help CSCS carry out its mission of tackling grand challenge science as well as critical applied research. Piz Daint will be used to analyze data from the Large Hadron Collider at CERN, to accelerate research on the Human Brain Project’s High Performance Analytics and Computing Platform, and to continue its work in meteorology and climatology among other domain areas, including deep learning — which was of course a highlight of the NVIDIA event.

“Today a lot of the machine learning work [at ETH Zurich] is happening on workstations and I think the researchers are only now starting to realize that they can actually do this at much bigger scale on our supercomputers,” said Schulthess.

Schulthess bulleted out what he thought were the three were the most important advantages of upgrading to the Pascal architecture and combining the two systems:

  1. Memory Bandwidth. He expects a substantial memory performance increase. “Exactly how big a boost, we will have to find out — probably NVIDIA doesn’t even know yet, but we do expect a big boost on the memory bandwidth. That’s really important because many applications on the GPU are memory bandwidth bound.”
  1. Pascal-Haswell Duo. “The combination of Pascal and Haswell versus K20x and Sandy Bridge is important [now] that we have PCIe Gen3. Imagine you have a job distributed over the GPU memory — a weather code or a climate code, [for example] over the GPU memory of many nodes. Now there is no bottleneck. The GPUs talk to each other with a similar bandwidth. Before the piece between the CPU and the GPU was slow and now the bottleneck is gone.”
  1. Overall Performance. “Pascal is higher performance. I expect that this combination of much better memory bandwidth and faster performance will increase the throughput of the system. And we will open the system to new applications with all these new cool developments that we have today, all these libraries that are coming out of the deep neural network side. Pascal will enable a lot of this.”

All netted out, Schulthess is confident Piz Daint will double performance for both compute and memory bound applications. “We’re not talking about FLOPS; we’re talking about application performance,” he said.

TOP500 the list graphicNot surprisingly, CSCS will again run the LINPACK benchmark on Piz Daint, according to Schulthess, in part for the high profile all supercomputer centers desire but equally because, “LINPACK is very, very good at finding out if there are any hardware problems. It was good last time and I’m sure it will be good for that this time.”

It’s not yet clear how energy efficient the new system will be, but Schulthess thinks it won’t be worse and may be better.

“This whole FLOPS per watt and FLOPS per second is very narrow view of looking at the performance of a system. You have to look at time-to-solution of applications and you have to look at energy-to-solution of applications. In a sense what you’ve want – and I’ve written this in a number of papers already – is for the time-to-solution to be good enough,” he said.

A good example, he noted, are weather forecasts, which need to be completed as quickly as practical so as to make them most useful. “At some point when the time-to-solution is good enough, then you want to really minimize energy to solution (not FLOPS-per-watt),” he agreed.

CSCS is exploring the use of Intel’s forthcoming Xeon Phi, but isn’t ready to comment as the work with Intel is ongoing. Software development is another a major investment area, said Schulthess, “much more important than the hardware. We will actually double up in the future with our investments.” Predictably, CSCS is “looking at everything, also ARM – but that is a whole separate conversation.” Indeed.

Notably, the merging of Piz Dora into Piz Daint opens up tremendous flexibility and is in keeping with the growing trend to create unified platforms able to handle big data analytics as well as traditional modeling and simulation.

For example, one can pre-process data and then scale the simulation up while the data is always on the same system.

“If we need GPU-acceleration for simulations but the CPUs for pre-processing, we move the data from the pre-processing side to the GPU-accelerated side. So you move data between partitions, but you’re doing this per node, at 10 gigabytes-per-second, which is much higher than I/O bandwidth if you go through the disks. We’ll have very high performance for the whole workflow and make things more convenient for the scientists,” said Schulthess.

What’s more, the incorporation of big data analytics tools and practices can help science adopt new approaches. “It’s one thing to bring the data analytics on the systems, but to me there is another very important benefit to the HPC community. The data analytics community is used to a different type of software environment — they like to use Python and SPARK, and in real-time not batches. If we’re able to get supercomputers to run Python and even SPARK, we make them much more usable also to the traditional scientific computing community.”

He cited CSCS work on climate and meteorology as an example, “There’s no reason you wouldn’t want climate scientists to write their models in Python rather than Fortran in the future. Their productivity could go up [significantly] on model development. On an old-style supercomputer, you don’t want to talk about those things. But thanks to the whole data science pressure, we’re creating a software environment that’s much more usable for computational scientists. To me, that’s almost as interesting as the deep learning stuff – enhancing productivity of scientists.”

Turning to the rise of container technology in high-end HPC, perhaps best illustrated by the Docker-Shifter effort at NERSC, Schulthess said CSCS was working with NVIDIA to expose the GPUs in Docker.

Schulthess predicts the revamped Piz Daint will be up and fully running in a year or so, “Our requirements are very high and we are not going to cut corners, but once that is done, moving applications from today’s Piz Daint to the new system, they will just fly — I don’t expect any issues there.” A key reason is Pascal GPUs are backwards compatible. In the words of NVIDIA, “It’s all CUDA; you can use the same application you had five years ago and it just scales up.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This