Europe’s Fastest Supercomputer to Get Pascal GPU Upgrade

By Tiffany Trader and John Russell

April 6, 2016

Already Europe’s fastest supercomputer at 7.8 petaflops, the Piz Daint (hybrid CPU/GPU Cray XC30) at the Swiss National Computing Center (CSCS) will double its performance with a massive upgrade that involves switching to NVIDIA’s newest Pascal GPU architecture and merging with Piz Dora (Cray XC40), a smaller CPU-based machine. The announcement was made at GTC16 yesterday. Last November Piz Daint placed seventh on the TOP500 list.

Plans call for 5,200 NVIDIA K20xs to be replaced by 4,500 Pascal GPUs – which version hasn’t been decided. Also, the Intel processors will be upgraded from Sandy Bridge to Haswell architecture. When completed, the new combined system, all on a single fabric, will keep the Piz Daint name and provide users with two types of compute nodes: hybrid CPU-GPU and CPU-only nodes. Although slightly reduced in physical size, Piz Daint will be more powerful and flexible allowing simulations or data analyses to be scaled to a few nodes or thousands of nodes.

“We are taking advantage of NVIDIA GPUs to significantly accelerate simulations in such diverse areas as cosmology, materials science, seismology and climatology,” said Thomas Schulthess, professor of computational physics at ETH Zurich and director of CSCS. “Tesla accelerators represent a leap forward in computing, allowing our researchers to solve larger, more complex problems that are currently out of reach in a host of fields.”

Pascal GPUs feature a number of breakthrough technologies, including second-generation High Bandwidth Memory (HBM2) that delivers three times higher bandwidth than the previous generation architecture, and 16nm FinFET technology for unprecedented energy efficiency.

NVIDIA Tesla P100 frontPiz Daint will also incorporate Cray’s DataWarp technology. DataWarp’s so-called Burst Buffer mode quadruples the effective bandwidth for long-term storage; in other words, data is input to and output from storage far more quickly. It paves the way for analyzing millions of small, unstructured files. Consequently, Piz Daint will be able to transfer initial results to a specialized area of the supercomputer for analysis while calculations are still under way.

The upgraded machine will help CSCS carry out its mission of tackling grand challenge science as well as critical applied research. Piz Daint will be used to analyze data from the Large Hadron Collider at CERN, to accelerate research on the Human Brain Project’s High Performance Analytics and Computing Platform, and to continue its work in meteorology and climatology among other domain areas, including deep learning — which was of course a highlight of the NVIDIA event.

“Today a lot of the machine learning work [at ETH Zurich] is happening on workstations and I think the researchers are only now starting to realize that they can actually do this at much bigger scale on our supercomputers,” said Schulthess.

Schulthess bulleted out what he thought were the three were the most important advantages of upgrading to the Pascal architecture and combining the two systems:

  1. Memory Bandwidth. He expects a substantial memory performance increase. “Exactly how big a boost, we will have to find out — probably NVIDIA doesn’t even know yet, but we do expect a big boost on the memory bandwidth. That’s really important because many applications on the GPU are memory bandwidth bound.”
  1. Pascal-Haswell Duo. “The combination of Pascal and Haswell versus K20x and Sandy Bridge is important [now] that we have PCIe Gen3. Imagine you have a job distributed over the GPU memory — a weather code or a climate code, [for example] over the GPU memory of many nodes. Now there is no bottleneck. The GPUs talk to each other with a similar bandwidth. Before the piece between the CPU and the GPU was slow and now the bottleneck is gone.”
  1. Overall Performance. “Pascal is higher performance. I expect that this combination of much better memory bandwidth and faster performance will increase the throughput of the system. And we will open the system to new applications with all these new cool developments that we have today, all these libraries that are coming out of the deep neural network side. Pascal will enable a lot of this.”

All netted out, Schulthess is confident Piz Daint will double performance for both compute and memory bound applications. “We’re not talking about FLOPS; we’re talking about application performance,” he said.

TOP500 the list graphicNot surprisingly, CSCS will again run the LINPACK benchmark on Piz Daint, according to Schulthess, in part for the high profile all supercomputer centers desire but equally because, “LINPACK is very, very good at finding out if there are any hardware problems. It was good last time and I’m sure it will be good for that this time.”

It’s not yet clear how energy efficient the new system will be, but Schulthess thinks it won’t be worse and may be better.

“This whole FLOPS per watt and FLOPS per second is very narrow view of looking at the performance of a system. You have to look at time-to-solution of applications and you have to look at energy-to-solution of applications. In a sense what you’ve want – and I’ve written this in a number of papers already – is for the time-to-solution to be good enough,” he said.

A good example, he noted, are weather forecasts, which need to be completed as quickly as practical so as to make them most useful. “At some point when the time-to-solution is good enough, then you want to really minimize energy to solution (not FLOPS-per-watt),” he agreed.

CSCS is exploring the use of Intel’s forthcoming Xeon Phi, but isn’t ready to comment as the work with Intel is ongoing. Software development is another a major investment area, said Schulthess, “much more important than the hardware. We will actually double up in the future with our investments.” Predictably, CSCS is “looking at everything, also ARM – but that is a whole separate conversation.” Indeed.

Notably, the merging of Piz Dora into Piz Daint opens up tremendous flexibility and is in keeping with the growing trend to create unified platforms able to handle big data analytics as well as traditional modeling and simulation.

For example, one can pre-process data and then scale the simulation up while the data is always on the same system.

“If we need GPU-acceleration for simulations but the CPUs for pre-processing, we move the data from the pre-processing side to the GPU-accelerated side. So you move data between partitions, but you’re doing this per node, at 10 gigabytes-per-second, which is much higher than I/O bandwidth if you go through the disks. We’ll have very high performance for the whole workflow and make things more convenient for the scientists,” said Schulthess.

What’s more, the incorporation of big data analytics tools and practices can help science adopt new approaches. “It’s one thing to bring the data analytics on the systems, but to me there is another very important benefit to the HPC community. The data analytics community is used to a different type of software environment — they like to use Python and SPARK, and in real-time not batches. If we’re able to get supercomputers to run Python and even SPARK, we make them much more usable also to the traditional scientific computing community.”

He cited CSCS work on climate and meteorology as an example, “There’s no reason you wouldn’t want climate scientists to write their models in Python rather than Fortran in the future. Their productivity could go up [significantly] on model development. On an old-style supercomputer, you don’t want to talk about those things. But thanks to the whole data science pressure, we’re creating a software environment that’s much more usable for computational scientists. To me, that’s almost as interesting as the deep learning stuff – enhancing productivity of scientists.”

Turning to the rise of container technology in high-end HPC, perhaps best illustrated by the Docker-Shifter effort at NERSC, Schulthess said CSCS was working with NVIDIA to expose the GPUs in Docker.

Schulthess predicts the revamped Piz Daint will be up and fully running in a year or so, “Our requirements are very high and we are not going to cut corners, but once that is done, moving applications from today’s Piz Daint to the new system, they will just fly — I don’t expect any issues there.” A key reason is Pascal GPUs are backwards compatible. In the words of NVIDIA, “It’s all CUDA; you can use the same application you had five years ago and it just scales up.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire