Europe’s Fastest Supercomputer to Get Pascal GPU Upgrade

By Tiffany Trader and John Russell

April 6, 2016

Already Europe’s fastest supercomputer at 7.8 petaflops, the Piz Daint (hybrid CPU/GPU Cray XC30) at the Swiss National Computing Center (CSCS) will double its performance with a massive upgrade that involves switching to NVIDIA’s newest Pascal GPU architecture and merging with Piz Dora (Cray XC40), a smaller CPU-based machine. The announcement was made at GTC16 yesterday. Last November Piz Daint placed seventh on the TOP500 list.

Plans call for 5,200 NVIDIA K20xs to be replaced by 4,500 Pascal GPUs – which version hasn’t been decided. Also, the Intel processors will be upgraded from Sandy Bridge to Haswell architecture. When completed, the new combined system, all on a single fabric, will keep the Piz Daint name and provide users with two types of compute nodes: hybrid CPU-GPU and CPU-only nodes. Although slightly reduced in physical size, Piz Daint will be more powerful and flexible allowing simulations or data analyses to be scaled to a few nodes or thousands of nodes.

“We are taking advantage of NVIDIA GPUs to significantly accelerate simulations in such diverse areas as cosmology, materials science, seismology and climatology,” said Thomas Schulthess, professor of computational physics at ETH Zurich and director of CSCS. “Tesla accelerators represent a leap forward in computing, allowing our researchers to solve larger, more complex problems that are currently out of reach in a host of fields.”

Pascal GPUs feature a number of breakthrough technologies, including second-generation High Bandwidth Memory (HBM2) that delivers three times higher bandwidth than the previous generation architecture, and 16nm FinFET technology for unprecedented energy efficiency.

NVIDIA Tesla P100 frontPiz Daint will also incorporate Cray’s DataWarp technology. DataWarp’s so-called Burst Buffer mode quadruples the effective bandwidth for long-term storage; in other words, data is input to and output from storage far more quickly. It paves the way for analyzing millions of small, unstructured files. Consequently, Piz Daint will be able to transfer initial results to a specialized area of the supercomputer for analysis while calculations are still under way.

The upgraded machine will help CSCS carry out its mission of tackling grand challenge science as well as critical applied research. Piz Daint will be used to analyze data from the Large Hadron Collider at CERN, to accelerate research on the Human Brain Project’s High Performance Analytics and Computing Platform, and to continue its work in meteorology and climatology among other domain areas, including deep learning — which was of course a highlight of the NVIDIA event.

“Today a lot of the machine learning work [at ETH Zurich] is happening on workstations and I think the researchers are only now starting to realize that they can actually do this at much bigger scale on our supercomputers,” said Schulthess.

Schulthess bulleted out what he thought were the three were the most important advantages of upgrading to the Pascal architecture and combining the two systems:

  1. Memory Bandwidth. He expects a substantial memory performance increase. “Exactly how big a boost, we will have to find out — probably NVIDIA doesn’t even know yet, but we do expect a big boost on the memory bandwidth. That’s really important because many applications on the GPU are memory bandwidth bound.”
  1. Pascal-Haswell Duo. “The combination of Pascal and Haswell versus K20x and Sandy Bridge is important [now] that we have PCIe Gen3. Imagine you have a job distributed over the GPU memory — a weather code or a climate code, [for example] over the GPU memory of many nodes. Now there is no bottleneck. The GPUs talk to each other with a similar bandwidth. Before the piece between the CPU and the GPU was slow and now the bottleneck is gone.”
  1. Overall Performance. “Pascal is higher performance. I expect that this combination of much better memory bandwidth and faster performance will increase the throughput of the system. And we will open the system to new applications with all these new cool developments that we have today, all these libraries that are coming out of the deep neural network side. Pascal will enable a lot of this.”

All netted out, Schulthess is confident Piz Daint will double performance for both compute and memory bound applications. “We’re not talking about FLOPS; we’re talking about application performance,” he said.

TOP500 the list graphicNot surprisingly, CSCS will again run the LINPACK benchmark on Piz Daint, according to Schulthess, in part for the high profile all supercomputer centers desire but equally because, “LINPACK is very, very good at finding out if there are any hardware problems. It was good last time and I’m sure it will be good for that this time.”

It’s not yet clear how energy efficient the new system will be, but Schulthess thinks it won’t be worse and may be better.

“This whole FLOPS per watt and FLOPS per second is very narrow view of looking at the performance of a system. You have to look at time-to-solution of applications and you have to look at energy-to-solution of applications. In a sense what you’ve want – and I’ve written this in a number of papers already – is for the time-to-solution to be good enough,” he said.

A good example, he noted, are weather forecasts, which need to be completed as quickly as practical so as to make them most useful. “At some point when the time-to-solution is good enough, then you want to really minimize energy to solution (not FLOPS-per-watt),” he agreed.

CSCS is exploring the use of Intel’s forthcoming Xeon Phi, but isn’t ready to comment as the work with Intel is ongoing. Software development is another a major investment area, said Schulthess, “much more important than the hardware. We will actually double up in the future with our investments.” Predictably, CSCS is “looking at everything, also ARM – but that is a whole separate conversation.” Indeed.

Notably, the merging of Piz Dora into Piz Daint opens up tremendous flexibility and is in keeping with the growing trend to create unified platforms able to handle big data analytics as well as traditional modeling and simulation.

For example, one can pre-process data and then scale the simulation up while the data is always on the same system.

“If we need GPU-acceleration for simulations but the CPUs for pre-processing, we move the data from the pre-processing side to the GPU-accelerated side. So you move data between partitions, but you’re doing this per node, at 10 gigabytes-per-second, which is much higher than I/O bandwidth if you go through the disks. We’ll have very high performance for the whole workflow and make things more convenient for the scientists,” said Schulthess.

What’s more, the incorporation of big data analytics tools and practices can help science adopt new approaches. “It’s one thing to bring the data analytics on the systems, but to me there is another very important benefit to the HPC community. The data analytics community is used to a different type of software environment — they like to use Python and SPARK, and in real-time not batches. If we’re able to get supercomputers to run Python and even SPARK, we make them much more usable also to the traditional scientific computing community.”

He cited CSCS work on climate and meteorology as an example, “There’s no reason you wouldn’t want climate scientists to write their models in Python rather than Fortran in the future. Their productivity could go up [significantly] on model development. On an old-style supercomputer, you don’t want to talk about those things. But thanks to the whole data science pressure, we’re creating a software environment that’s much more usable for computational scientists. To me, that’s almost as interesting as the deep learning stuff – enhancing productivity of scientists.”

Turning to the rise of container technology in high-end HPC, perhaps best illustrated by the Docker-Shifter effort at NERSC, Schulthess said CSCS was working with NVIDIA to expose the GPUs in Docker.

Schulthess predicts the revamped Piz Daint will be up and fully running in a year or so, “Our requirements are very high and we are not going to cut corners, but once that is done, moving applications from today’s Piz Daint to the new system, they will just fly — I don’t expect any issues there.” A key reason is Pascal GPUs are backwards compatible. In the words of NVIDIA, “It’s all CUDA; you can use the same application you had five years ago and it just scales up.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with the enterprise strengths of its recent acquisitions, notably Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Preparing for Exascale Science on Day 1

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascal Read more…

By Linda Barney

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This