Europe’s Fastest Supercomputer to Get Pascal GPU Upgrade

By Tiffany Trader and John Russell

April 6, 2016

Already Europe’s fastest supercomputer at 7.8 petaflops, the Piz Daint (hybrid CPU/GPU Cray XC30) at the Swiss National Computing Center (CSCS) will double its performance with a massive upgrade that involves switching to NVIDIA’s newest Pascal GPU architecture and merging with Piz Dora (Cray XC40), a smaller CPU-based machine. The announcement was made at GTC16 yesterday. Last November Piz Daint placed seventh on the TOP500 list.

Plans call for 5,200 NVIDIA K20xs to be replaced by 4,500 Pascal GPUs – which version hasn’t been decided. Also, the Intel processors will be upgraded from Sandy Bridge to Haswell architecture. When completed, the new combined system, all on a single fabric, will keep the Piz Daint name and provide users with two types of compute nodes: hybrid CPU-GPU and CPU-only nodes. Although slightly reduced in physical size, Piz Daint will be more powerful and flexible allowing simulations or data analyses to be scaled to a few nodes or thousands of nodes.

“We are taking advantage of NVIDIA GPUs to significantly accelerate simulations in such diverse areas as cosmology, materials science, seismology and climatology,” said Thomas Schulthess, professor of computational physics at ETH Zurich and director of CSCS. “Tesla accelerators represent a leap forward in computing, allowing our researchers to solve larger, more complex problems that are currently out of reach in a host of fields.”

Pascal GPUs feature a number of breakthrough technologies, including second-generation High Bandwidth Memory (HBM2) that delivers three times higher bandwidth than the previous generation architecture, and 16nm FinFET technology for unprecedented energy efficiency.

NVIDIA Tesla P100 frontPiz Daint will also incorporate Cray’s DataWarp technology. DataWarp’s so-called Burst Buffer mode quadruples the effective bandwidth for long-term storage; in other words, data is input to and output from storage far more quickly. It paves the way for analyzing millions of small, unstructured files. Consequently, Piz Daint will be able to transfer initial results to a specialized area of the supercomputer for analysis while calculations are still under way.

The upgraded machine will help CSCS carry out its mission of tackling grand challenge science as well as critical applied research. Piz Daint will be used to analyze data from the Large Hadron Collider at CERN, to accelerate research on the Human Brain Project’s High Performance Analytics and Computing Platform, and to continue its work in meteorology and climatology among other domain areas, including deep learning — which was of course a highlight of the NVIDIA event.

“Today a lot of the machine learning work [at ETH Zurich] is happening on workstations and I think the researchers are only now starting to realize that they can actually do this at much bigger scale on our supercomputers,” said Schulthess.

Schulthess bulleted out what he thought were the three were the most important advantages of upgrading to the Pascal architecture and combining the two systems:

  1. Memory Bandwidth. He expects a substantial memory performance increase. “Exactly how big a boost, we will have to find out — probably NVIDIA doesn’t even know yet, but we do expect a big boost on the memory bandwidth. That’s really important because many applications on the GPU are memory bandwidth bound.”
  1. Pascal-Haswell Duo. “The combination of Pascal and Haswell versus K20x and Sandy Bridge is important [now] that we have PCIe Gen3. Imagine you have a job distributed over the GPU memory — a weather code or a climate code, [for example] over the GPU memory of many nodes. Now there is no bottleneck. The GPUs talk to each other with a similar bandwidth. Before the piece between the CPU and the GPU was slow and now the bottleneck is gone.”
  1. Overall Performance. “Pascal is higher performance. I expect that this combination of much better memory bandwidth and faster performance will increase the throughput of the system. And we will open the system to new applications with all these new cool developments that we have today, all these libraries that are coming out of the deep neural network side. Pascal will enable a lot of this.”

All netted out, Schulthess is confident Piz Daint will double performance for both compute and memory bound applications. “We’re not talking about FLOPS; we’re talking about application performance,” he said.

TOP500 the list graphicNot surprisingly, CSCS will again run the LINPACK benchmark on Piz Daint, according to Schulthess, in part for the high profile all supercomputer centers desire but equally because, “LINPACK is very, very good at finding out if there are any hardware problems. It was good last time and I’m sure it will be good for that this time.”

It’s not yet clear how energy efficient the new system will be, but Schulthess thinks it won’t be worse and may be better.

“This whole FLOPS per watt and FLOPS per second is very narrow view of looking at the performance of a system. You have to look at time-to-solution of applications and you have to look at energy-to-solution of applications. In a sense what you’ve want – and I’ve written this in a number of papers already – is for the time-to-solution to be good enough,” he said.

A good example, he noted, are weather forecasts, which need to be completed as quickly as practical so as to make them most useful. “At some point when the time-to-solution is good enough, then you want to really minimize energy to solution (not FLOPS-per-watt),” he agreed.

CSCS is exploring the use of Intel’s forthcoming Xeon Phi, but isn’t ready to comment as the work with Intel is ongoing. Software development is another a major investment area, said Schulthess, “much more important than the hardware. We will actually double up in the future with our investments.” Predictably, CSCS is “looking at everything, also ARM – but that is a whole separate conversation.” Indeed.

Notably, the merging of Piz Dora into Piz Daint opens up tremendous flexibility and is in keeping with the growing trend to create unified platforms able to handle big data analytics as well as traditional modeling and simulation.

For example, one can pre-process data and then scale the simulation up while the data is always on the same system.

“If we need GPU-acceleration for simulations but the CPUs for pre-processing, we move the data from the pre-processing side to the GPU-accelerated side. So you move data between partitions, but you’re doing this per node, at 10 gigabytes-per-second, which is much higher than I/O bandwidth if you go through the disks. We’ll have very high performance for the whole workflow and make things more convenient for the scientists,” said Schulthess.

What’s more, the incorporation of big data analytics tools and practices can help science adopt new approaches. “It’s one thing to bring the data analytics on the systems, but to me there is another very important benefit to the HPC community. The data analytics community is used to a different type of software environment — they like to use Python and SPARK, and in real-time not batches. If we’re able to get supercomputers to run Python and even SPARK, we make them much more usable also to the traditional scientific computing community.”

He cited CSCS work on climate and meteorology as an example, “There’s no reason you wouldn’t want climate scientists to write their models in Python rather than Fortran in the future. Their productivity could go up [significantly] on model development. On an old-style supercomputer, you don’t want to talk about those things. But thanks to the whole data science pressure, we’re creating a software environment that’s much more usable for computational scientists. To me, that’s almost as interesting as the deep learning stuff – enhancing productivity of scientists.”

Turning to the rise of container technology in high-end HPC, perhaps best illustrated by the Docker-Shifter effort at NERSC, Schulthess said CSCS was working with NVIDIA to expose the GPUs in Docker.

Schulthess predicts the revamped Piz Daint will be up and fully running in a year or so, “Our requirements are very high and we are not going to cut corners, but once that is done, moving applications from today’s Piz Daint to the new system, they will just fly — I don’t expect any issues there.” A key reason is Pascal GPUs are backwards compatible. In the words of NVIDIA, “It’s all CUDA; you can use the same application you had five years ago and it just scales up.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire