The Ultimate Debate – Interconnect Offloading Versus Onloading

By Gilad Shainer, Mellanox

April 12, 2016

The high performance computing market is going through a technology transition – the Co-Design transition. As has already been discussed in many articles, this transition has emerged in order to solve the performance bottlenecks of today’s infrastructures and applications, performance bottlenecks that were created by multi-core CPUs and the existing CPU-centric system architecture.

How are multi-core CPUs the source for today’s performance bottlenecks? In order to understand that, we need to go back in time to the era of single-core CPUs. Back then, performance gains came from increases in CPU frequency and from the reduction of networking functions (network adapter and switches). Each new generation of product brought faster CPUs and lower-latency network adapters and switches, and that combination was the main performance factor. But this could not continue forever. The CPU frequency could not be increased any more due to power limitations, and instead of increasing the speed of the application process, we began using more CPU cores in parallel, thereby executing more processes at the same time. This enabled us to continue improving application performance, not by running faster, but by running more at the same time.

This new paradigm of increasing the amount of CPU cores dramatically increased the burden on the interconnect, and, moreover, changed the interconnect into the main performance enabler of the system. The key performance concern was how fast all the CPU processes could be synchronized and how fast data could be aggregated and distributed between them.

But the native interconnect latency has also reached the point of being exceedingly small compared to the overall communication patter. Today, InfiniBand switches runs at 90 nanosecond latency and InfiniBand adapters at 100 nanosecond latency. For CPU process communication frameworks, such as MPI collective communications, latency is in the range of tens of microseconds. Even if we continue to see reduction in the interconnect latency of another 10, 20, 40, or 50 nanoseconds, this is clearly negligible compared to the process communication latency. That means that the idea that has been suggested by certain companies to merge the network adapter with the CPU in order to reduce a few nanoseconds is certainly not the right thing for the future of HPC.

It is fair to ask whether this is relevant to the debate between offloading and onloading. The answer is that it is very relevant. In the past, the debate between offloading and onloading was mainly centered around CPU efficiency. An offloading interconnect technology was more complex to design and build, but in return, it offloaded the CPU from managing network activities, which could easily result in 40-50 percent better CPU and system utilization. The onloading interconnect technology is easier to build, but it is nothing more than a simple pipe, and all the network operations still must be managed and executed by the CPU; half of the CPU’s time is wasted from the point of the application. Furthermore, offloading enables technologies like RDMA, which cannot be done with an onloading approach. We have therefore witnessed numerous application performance examples that demonstrate the clear and dominant advantage of offloading solutions over onloading products (for example, DDR InfiniBand vs. Pathscale InfiniPath and QDR InfiniBand vs. QLogic/Intel TrueScale) [see i, ii, and iii].

Nowadays, the offloading architecture has become the critical element in overcoming performance bottlenecks, and it is not just a matter of performance and cost/performance comparisons. Systems cannot continue to scale unless intelligent interconnect and offloading are used.

As the number of processes continues to grow, one can increase the parallelism of solving the complex problems we deal with in science, research, and manufacturing. Therefore, the process communications become more and more critical. It is more than just the network latency of ping pong operations, but also the communication latency of complex, critical communications – collective operations or data aggregation operations. Executing these operations on the CPU/node has reach its performance limit and cannot be accelerated any further. The only solution is actually to perform these operations on the data while its moves within the cluster; that is, they are executed by the interconnect functions (switch, adapter) as the data moves. This approach, which was developed under the global architecture of Co-Design, will take us farther down the path toward exascale computing.

This technology trend will not affect only HPC, but rather will change the world of data analytics, machine learning, and other data-intensive applications and data search-based applications. The CPU core parallelism that saved the day in the mid-2000s has become the bottleneck today, and the new intelligent offloading interconnect solutions are the new saviors. Intelligent interconnect solutions are becoming the new co-processors, and they are therefore becoming a key factor for scalable computing.

Going back to basic application performance and system return on investment, it is expected that the comparison between EDR InfiniBand and Intel Omni-Path would be similar to the previous comparisons between the two different interconnect technology approaches. While only very small setups are available today, one can already see the system performance difference in various HPC application cases, for example WIEN2K, Quantum Espresso, and LS-DYNA.

WIEN2k allows users to perform electronic structure calculations of solids using density functional theory. It is an all-electron scheme including relativistic effects and has been licensed by more than 2000 user groups. Quantum Espresso is an integrated suite of Open Source computer codes for electronic structure calculations and materials modeling at the nanoscale. It is based on density functional theory, plane waves, and pseudopotentials. LS-DYNA is an advanced general-purpose multiphysics simulation software package developed by the Livermore Software Technology Corporation (LSTC). While the package continues to contain ever more possibilities for the calculation of complex, real world problems, its origins and core-competency lie in highly non-linear transient dynamic finite element analysis (FEA) using explicit time integration. LS-DYNA is used by the automotive, aerospace, construction, military, manufacturing, and bioengineering industries.

WIEN2K Performance comparison

Quantum ESPRESSO Performance comparison

LS-DYNA Performance comparison

In all three cases, we can see a clear performance advantage of the EDR InfiniBand smart network. It should be noted that the performance difference is of the entire system, ranging from 35% to 63% higher system performance with InfiniBand. It should also be noted that the system scale for these tests is small, and the gap will increase with system size.

Furthermore, as can be seen in the LS-DYNA case, for example, InfiniBand enables higher performance with only six nodes, versus Omni-Path on 12 nodes – InfiniBand delivers higher performance with half of the system size versus Omni-Path.

The system performance difference with smart offloading interconnect is clear, and the case of InfiniBand vs. Omni-Path is no different.





Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This