The Ultimate Debate – Interconnect Offloading Versus Onloading

By Gilad Shainer, Mellanox

April 12, 2016

The high performance computing market is going through a technology transition – the Co-Design transition. As has already been discussed in many articles, this transition has emerged in order to solve the performance bottlenecks of today’s infrastructures and applications, performance bottlenecks that were created by multi-core CPUs and the existing CPU-centric system architecture.

How are multi-core CPUs the source for today’s performance bottlenecks? In order to understand that, we need to go back in time to the era of single-core CPUs. Back then, performance gains came from increases in CPU frequency and from the reduction of networking functions (network adapter and switches). Each new generation of product brought faster CPUs and lower-latency network adapters and switches, and that combination was the main performance factor. But this could not continue forever. The CPU frequency could not be increased any more due to power limitations, and instead of increasing the speed of the application process, we began using more CPU cores in parallel, thereby executing more processes at the same time. This enabled us to continue improving application performance, not by running faster, but by running more at the same time.

This new paradigm of increasing the amount of CPU cores dramatically increased the burden on the interconnect, and, moreover, changed the interconnect into the main performance enabler of the system. The key performance concern was how fast all the CPU processes could be synchronized and how fast data could be aggregated and distributed between them.

But the native interconnect latency has also reached the point of being exceedingly small compared to the overall communication patter. Today, InfiniBand switches runs at 90 nanosecond latency and InfiniBand adapters at 100 nanosecond latency. For CPU process communication frameworks, such as MPI collective communications, latency is in the range of tens of microseconds. Even if we continue to see reduction in the interconnect latency of another 10, 20, 40, or 50 nanoseconds, this is clearly negligible compared to the process communication latency. That means that the idea that has been suggested by certain companies to merge the network adapter with the CPU in order to reduce a few nanoseconds is certainly not the right thing for the future of HPC.

It is fair to ask whether this is relevant to the debate between offloading and onloading. The answer is that it is very relevant. In the past, the debate between offloading and onloading was mainly centered around CPU efficiency. An offloading interconnect technology was more complex to design and build, but in return, it offloaded the CPU from managing network activities, which could easily result in 40-50 percent better CPU and system utilization. The onloading interconnect technology is easier to build, but it is nothing more than a simple pipe, and all the network operations still must be managed and executed by the CPU; half of the CPU’s time is wasted from the point of the application. Furthermore, offloading enables technologies like RDMA, which cannot be done with an onloading approach. We have therefore witnessed numerous application performance examples that demonstrate the clear and dominant advantage of offloading solutions over onloading products (for example, DDR InfiniBand vs. Pathscale InfiniPath and QDR InfiniBand vs. QLogic/Intel TrueScale) [see i, ii, and iii].

Nowadays, the offloading architecture has become the critical element in overcoming performance bottlenecks, and it is not just a matter of performance and cost/performance comparisons. Systems cannot continue to scale unless intelligent interconnect and offloading are used.

As the number of processes continues to grow, one can increase the parallelism of solving the complex problems we deal with in science, research, and manufacturing. Therefore, the process communications become more and more critical. It is more than just the network latency of ping pong operations, but also the communication latency of complex, critical communications – collective operations or data aggregation operations. Executing these operations on the CPU/node has reach its performance limit and cannot be accelerated any further. The only solution is actually to perform these operations on the data while its moves within the cluster; that is, they are executed by the interconnect functions (switch, adapter) as the data moves. This approach, which was developed under the global architecture of Co-Design, will take us farther down the path toward exascale computing.

This technology trend will not affect only HPC, but rather will change the world of data analytics, machine learning, and other data-intensive applications and data search-based applications. The CPU core parallelism that saved the day in the mid-2000s has become the bottleneck today, and the new intelligent offloading interconnect solutions are the new saviors. Intelligent interconnect solutions are becoming the new co-processors, and they are therefore becoming a key factor for scalable computing.

Going back to basic application performance and system return on investment, it is expected that the comparison between EDR InfiniBand and Intel Omni-Path would be similar to the previous comparisons between the two different interconnect technology approaches. While only very small setups are available today, one can already see the system performance difference in various HPC application cases, for example WIEN2K, Quantum Espresso, and LS-DYNA.

WIEN2k allows users to perform electronic structure calculations of solids using density functional theory. It is an all-electron scheme including relativistic effects and has been licensed by more than 2000 user groups. Quantum Espresso is an integrated suite of Open Source computer codes for electronic structure calculations and materials modeling at the nanoscale. It is based on density functional theory, plane waves, and pseudopotentials. LS-DYNA is an advanced general-purpose multiphysics simulation software package developed by the Livermore Software Technology Corporation (LSTC). While the package continues to contain ever more possibilities for the calculation of complex, real world problems, its origins and core-competency lie in highly non-linear transient dynamic finite element analysis (FEA) using explicit time integration. LS-DYNA is used by the automotive, aerospace, construction, military, manufacturing, and bioengineering industries.

WIEN2K Performance comparison

Quantum ESPRESSO Performance comparison

LS-DYNA Performance comparison

In all three cases, we can see a clear performance advantage of the EDR InfiniBand smart network. It should be noted that the performance difference is of the entire system, ranging from 35% to 63% higher system performance with InfiniBand. It should also be noted that the system scale for these tests is small, and the gap will increase with system size.

Furthermore, as can be seen in the LS-DYNA case, for example, InfiniBand enables higher performance with only six nodes, versus Omni-Path on 12 nodes – InfiniBand delivers higher performance with half of the system size versus Omni-Path.

The system performance difference with smart offloading interconnect is clear, and the case of InfiniBand vs. Omni-Path is no different.

References

[i] http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5613096&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5613096

[ii] http://www.dynalook.com/european-conf-2007/ls-dyna-performance-and-scalability-in-the-multi.pdf

[iii] http://www.eetimes.com/document.asp?doc_id=1278292&page_number=2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This