The Ultimate Debate – Interconnect Offloading Versus Onloading

By Gilad Shainer, Mellanox

April 12, 2016

The high performance computing market is going through a technology transition – the Co-Design transition. As has already been discussed in many articles, this transition has emerged in order to solve the performance bottlenecks of today’s infrastructures and applications, performance bottlenecks that were created by multi-core CPUs and the existing CPU-centric system architecture.

How are multi-core CPUs the source for today’s performance bottlenecks? In order to understand that, we need to go back in time to the era of single-core CPUs. Back then, performance gains came from increases in CPU frequency and from the reduction of networking functions (network adapter and switches). Each new generation of product brought faster CPUs and lower-latency network adapters and switches, and that combination was the main performance factor. But this could not continue forever. The CPU frequency could not be increased any more due to power limitations, and instead of increasing the speed of the application process, we began using more CPU cores in parallel, thereby executing more processes at the same time. This enabled us to continue improving application performance, not by running faster, but by running more at the same time.

This new paradigm of increasing the amount of CPU cores dramatically increased the burden on the interconnect, and, moreover, changed the interconnect into the main performance enabler of the system. The key performance concern was how fast all the CPU processes could be synchronized and how fast data could be aggregated and distributed between them.

But the native interconnect latency has also reached the point of being exceedingly small compared to the overall communication patter. Today, InfiniBand switches runs at 90 nanosecond latency and InfiniBand adapters at 100 nanosecond latency. For CPU process communication frameworks, such as MPI collective communications, latency is in the range of tens of microseconds. Even if we continue to see reduction in the interconnect latency of another 10, 20, 40, or 50 nanoseconds, this is clearly negligible compared to the process communication latency. That means that the idea that has been suggested by certain companies to merge the network adapter with the CPU in order to reduce a few nanoseconds is certainly not the right thing for the future of HPC.

It is fair to ask whether this is relevant to the debate between offloading and onloading. The answer is that it is very relevant. In the past, the debate between offloading and onloading was mainly centered around CPU efficiency. An offloading interconnect technology was more complex to design and build, but in return, it offloaded the CPU from managing network activities, which could easily result in 40-50 percent better CPU and system utilization. The onloading interconnect technology is easier to build, but it is nothing more than a simple pipe, and all the network operations still must be managed and executed by the CPU; half of the CPU’s time is wasted from the point of the application. Furthermore, offloading enables technologies like RDMA, which cannot be done with an onloading approach. We have therefore witnessed numerous application performance examples that demonstrate the clear and dominant advantage of offloading solutions over onloading products (for example, DDR InfiniBand vs. Pathscale InfiniPath and QDR InfiniBand vs. QLogic/Intel TrueScale) [see i, ii, and iii].

Nowadays, the offloading architecture has become the critical element in overcoming performance bottlenecks, and it is not just a matter of performance and cost/performance comparisons. Systems cannot continue to scale unless intelligent interconnect and offloading are used.

As the number of processes continues to grow, one can increase the parallelism of solving the complex problems we deal with in science, research, and manufacturing. Therefore, the process communications become more and more critical. It is more than just the network latency of ping pong operations, but also the communication latency of complex, critical communications – collective operations or data aggregation operations. Executing these operations on the CPU/node has reach its performance limit and cannot be accelerated any further. The only solution is actually to perform these operations on the data while its moves within the cluster; that is, they are executed by the interconnect functions (switch, adapter) as the data moves. This approach, which was developed under the global architecture of Co-Design, will take us farther down the path toward exascale computing.

This technology trend will not affect only HPC, but rather will change the world of data analytics, machine learning, and other data-intensive applications and data search-based applications. The CPU core parallelism that saved the day in the mid-2000s has become the bottleneck today, and the new intelligent offloading interconnect solutions are the new saviors. Intelligent interconnect solutions are becoming the new co-processors, and they are therefore becoming a key factor for scalable computing.

Going back to basic application performance and system return on investment, it is expected that the comparison between EDR InfiniBand and Intel Omni-Path would be similar to the previous comparisons between the two different interconnect technology approaches. While only very small setups are available today, one can already see the system performance difference in various HPC application cases, for example WIEN2K, Quantum Espresso, and LS-DYNA.

WIEN2k allows users to perform electronic structure calculations of solids using density functional theory. It is an all-electron scheme including relativistic effects and has been licensed by more than 2000 user groups. Quantum Espresso is an integrated suite of Open Source computer codes for electronic structure calculations and materials modeling at the nanoscale. It is based on density functional theory, plane waves, and pseudopotentials. LS-DYNA is an advanced general-purpose multiphysics simulation software package developed by the Livermore Software Technology Corporation (LSTC). While the package continues to contain ever more possibilities for the calculation of complex, real world problems, its origins and core-competency lie in highly non-linear transient dynamic finite element analysis (FEA) using explicit time integration. LS-DYNA is used by the automotive, aerospace, construction, military, manufacturing, and bioengineering industries.

WIEN2K Performance comparison

Quantum ESPRESSO Performance comparison

LS-DYNA Performance comparison

In all three cases, we can see a clear performance advantage of the EDR InfiniBand smart network. It should be noted that the performance difference is of the entire system, ranging from 35% to 63% higher system performance with InfiniBand. It should also be noted that the system scale for these tests is small, and the gap will increase with system size.

Furthermore, as can be seen in the LS-DYNA case, for example, InfiniBand enables higher performance with only six nodes, versus Omni-Path on 12 nodes – InfiniBand delivers higher performance with half of the system size versus Omni-Path.

The system performance difference with smart offloading interconnect is clear, and the case of InfiniBand vs. Omni-Path is no different.

References

[i] http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5613096&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5613096

[ii] http://www.dynalook.com/european-conf-2007/ls-dyna-performance-and-scalability-in-the-multi.pdf

[iii] http://www.eetimes.com/document.asp?doc_id=1278292&page_number=2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This