ITIF Report Aims to Sway Congress, Promote National HPC Agenda

By John Russell

April 28, 2016

The Information Technology and Innovation Foundation (ITIF), a Washington D.C. think tank with close ties to the Office of Science and Technology Policy and government broadly, today released an expansive report – The Vital Importance of High- Performance Computing to U.S. Competitiveness – and also held a panel to discuss the report’s recommendation. Noteworthy, many of the panelists are familiar names in the HPC community.

All boiled down, the ITIF report is another call for national action in support of HPC, similar in tone to (and supportive of) the National Strategic Computing Initiative (NSCI). Calling HPC a strategic, game- changing technology with tremendous economic competitiveness, science leadership, and national security implications, the ITIF document treads familiar NSCI ground as shown this brief excerpt:

“Because HPC stands at the forefront of scientific discovery and commercial innovation, it is positioned at the frontier of competition—for nations and their enterprises alike—making U.S. strength in producing and adopting HPC central to its competitiveness. But as competitor nations rapidly scale up their investments in and applications of high-performance computing, America will need concerted public and private collaboration and investment to maintain its leading position in both HPC production and application.”

ITIF.KeynoterHow effective this latest call for a coordinated national HPC policy will be is an open question. ITIF’s bipartisan nature may help, say observers, and today’s keynoter before the panel was Republican Randy Hultgren, Representative (R-IL-14) U.S. Congress (shown on the right).

The scheduled panel featured prominent HPC organizations and senior personnel:

  • IntelJoseph Curley, Intel’s senior director, HPC Platform and Ecosystem Enablement in the High Performance Computing Platform Group.
  • Hewlett Packard EnterpriseBill Mannel, vice president and general manager of High-Performance Computing and Big Data.
  • IBM – David Turek, vice president, Exascale Systems.
  • National Renewable Energy Laboratory (NREL) – Steven Hammond, director of the Computational Science Center.
  • IDCRobert Sorensen, IDC research vice president, IDC High Performance Computing.
  • ITIFStephen Ezell, one of the report’s authors and vice president, Global Innovation Policy.

It’s good to recall the draft implementation plan for NSCI has yet to be made public. IDC’s Sorensen, who spent 30-plus years as a senior technology analyst in government said he was among many senior HPC watchers who were extensively interviewed by ITIF for the report, “They were very interested in getting the story right, and their credibility is good. But to be sure, they are not HPC experts, but they have good political cred here in DC.”

Turek of IBM said after the panel, “The report is well intentioned and mostly correct. [It] makes a compelling case that HPC is widely used and particularly beneficial, but who needs to read it to be convinced of it.” Turek wondered how best to handle the ‘operationalizing’ challenge which was not spelled out as clearly as the goals.

Unlike the NSCI executive order, the ITIF report presents a fair number of details and examples of the role and impact of HPC on industry as well a compilation of major global initiatives seeking to obtain HPC leadership. China’s developing plans – including expectations it will fire up two 100 petaflops computers this year – receives lengthy treatment.

ITIF HPC Programs Table

Excerpt: “Clearly, China has made HPC leadership a national priority. A key reason for this is that, for China, leadership in high-performance computing is central to the country’s goal of transitioning away from reliance on foreign technology to using homegrown technology. As Li Na, a spokesperson for the Tianhe-2 project, explains, “We are producing supercomputers with a fundamental purpose of providing a driving force for the construction of an innovation-oriented country.” As IDC’s Rajnish Arora explains, “The Chinese government and companies want to become the creators and not just producer of products that are being designed elsewhere.” Or, as Chinese President Xi Jinping himself puts it, China has built its HPC capabilities in part to demonstrate that the country has become a cyber power.”

ITIF_Report_CoverIn the release announcing the report, ITIF’s Ezell is quoted, “The U.S. is home to three of the five fastest supercomputers in the world, but China is home to the global frontrunner and plans to launch an even faster supercomputer this year. Japan and the EU have also introduced concerted national programs to achieve high-performance computing leadership. While America is still the world leader, other nations are gaining on us, so the U.S. cannot afford to rest on its laurels. It is important for policymakers to build on efforts the Obama administration has undertaken to ensure the U.S. does not get out paced.”

National plans/aspirations in Europe, Japan, Russia, South Korea, and India are also briefly reviewed. For those familiar with HPC, the full report is a fast read – despite its 50-plus-page length.

The ITIF report calls for energizing NSCI and the additional steps listed here:

Congress should:

  • Hold hearings on the National Strategic Computing Initiative (NSCI) and the intensifying race for global HPC leadership.
  • Authorize and appropriate funding levels for the National Strategic Computing Initiative as requested in the Obama administration’s FY 2017 budget for FY 2017 and for future years.
  • Reform export control regulations to match the reality of current high- performance computing systems.

The administration, or its agencies and departments therein, should:

  • Continue to make technology transfer and commercialization activities a priority focus of America’s network of national laboratories.
  • Emphasize HPC in federal worker training and retraining programs.
  • Emphasize HPC in relevant Manufacturing Extension Partnership (MEP) engagements, helping facilitate small- to medium-sized enterprises’ (SME) access to high-performance computing.

Turek made a few suggestions for modification or additions to the report’s policy recommendations. For example, with respect to NSCI, Turek said, “It would be appropriate formally to get leaders from American industry involved to establish the list of industry grand challenges so there is a direct linkage between the activities of NSCI and impact on competitiveness as opposed to thinking it is going to be accomplished through some sort of indirect trickle down effect. I also thought it would be motivating for people to come and work on these problems.”

The expansion of industrial use of HPC is certainly a central tenant of the report. It notes: “Finally, in February 2016, as part of its HPC4Mfg (HPC for Manufacturing) challenge, the Department of Energy announced $3 million in funding for 10 projects that will allow manufacturers to tap into the power of HPC systems at DOE-managed national laboratories.113 Each of the projects is designed to leverage HPC to improve efficiency, enhance product development, or reduce energy consumption. For example, one initiative will help Global Foundries optimize semiconductor transistor design, and in another GE will leverage advanced HPC particle physics simulations to improve the efficiency and lifespan of its aircraft engines.114 The vision is to grow this concept from just HPC4Mfg into an HPC4X template where the same process can be applied to HPC4transportation, HPC4life sciences, etc.”

The compilation of examples of HPC’s impact on industry is extensive and although many are widely known, it’s the scope of HPC’s current potential effect that is most interesting. Here are just three from the report, which is freely available online:

  • “Boeing physically tested 77 prototype wing designs for its 767 aircraft (which was designed in the 1980s), but for its new 787 Dreamliner, only 11 wing designs were physically tested (a 7-fold reduction in the needed amount of prototyping), primarily because over 800,000 hours of supercomputer simulations had drastically reduced the need for physical prototyping.5
  • “HPC has facilitated development of a cloud-based tool that simulates welding processes used in metallic product manufacturing. The application, being developed by the Ohio Supercomputer Center (OSC) and the Engineering Mechanics Corporation of Columbus, in part through a Small Business Innovation Research (SBIR) grant awarded by DOE, is a welding design software package called Virtual Fabrication Technology that enables SMEs to tap into HPC resources, so they can validate the integrity of welds in assembled components.85
  • “Roughly 4,100 genetic diseases affect humans, and they are the main causes of infant deaths. But identifying which genetic disease is affecting a critically ill child is extremely difficult. For one infant suffering from liver failure, the center used 25 hours of supercomputer time to analyze 120 billion nucleotide sequences and narrowed the cause of the illness down to two possible genetic variants. Thanks to this highly accurate diagnosis, the baby is alive and well today.”

One issue raised by Turek is the need to incentivize ISVs. The SME community highlighted in the report relies heavily on commercial codes, but these codes don’t scale well, and many ISVs have established positions of prominence in particular; as a result they have limited motivation to drive advances. Most of the codes were developed in the late 60s and 70s – often with Government funding at national labs – when no anticipated scaling would become the dominant computing paradigm.

Turek made two suggestions, “One, we should reengage ISVs on this issue of modern algorithm development and modern numerical methods in the context of emerging kind of hardware architectures we’re seeing. That would go a long way to helping overcome the scaling issues of today.” Number two, thought needs to be given to how best to “provide incentives to get these commercial ISVS to modernize their software, make it portable, and make it scalable, if there is not a market push to do this.”

If the incentives are there and commercial ISVs “don’t respond well, then redirect that money to the open source community and help them get better established,” said Turek.

Needed training and the potential for expanding the workforce are also covered. The report notes that HPC specifically is an important component of the broader computer manufacturing subsector that in the United States employs approximately 1 million individuals, 600,000 in production roles.34 In 2015, this employment included 28,370 computer hardware engineers; 22,570 semiconductor processors; 38,010 electrical and electronic engineering technicians; and 97,200 electronic and electronic equipment assemblers.

The report is peppered with statistics, quotes, and examples and is best read in full to form one’s own conclusion. It will be interesting to see if the ITIF report can generate real activity. Sorensen, who participated in the early development of NSCI noted, “I am really looking to see if this is a chance to get the Hill engaged.”

You can read the full report here and watch the video of the panel here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the training and inference performance of systems that are availa Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire