China Sets Ambitious Goal to Reach Exascale by 2020

By Tiffany Trader

May 2, 2016

At the 12th HPC Connections Workshop in Wuhan, China, Beihang University Professor Depei Qian disclosed new information regarding HPC development in China and exascale plans that are shaping up under China’s 13th five-year plan (2016-2020). Since 1996 Professor Professor Qian has served on the expert committee for the National High-tech Research & Development Program (the 863 program). Currently, he is the chief scientist of the 863 key project on high productivity computer and application service environment.

Professor Qian acknowledged that despite export restrictions on processor and software technology imposed by the US, work continues on two 100 petaflops (peak) systems: the next iteration of Tianhe-2, installed at the National Supercomputer Center in Guangzhou, and the upcoming Sunway system coming to the Jiangnan Institute of Computer Technology in Wuxi, China, near Shanghai. The official line is that these systems will be ready “by the end of the year,” but there have been rumblings that one or both of these systems will be introduced during the ISC’16 event in June.

In a Tuesday session at ISC, Professor Dr. Guangwen Yang, the director of the National Supercomputer Center at Wuxi, China, is slated to deliver talk titled “The New Sunway Supercomputer System at Wuxi.” Dr. Yang will describe the hardware and software elements that make up the system and some of the applications that will be deployed on it. A notice for that talk mentions that the system will be formally announced this summer.

China has been known to play its cards close to the vest before and launched its current supercomputing star, Tianhe-2, two years ahead of schedule. With a theoretical peak speed of 54.9 petaflops and a LINPACK rating of 33.86 petaflops, Tianhe-2 (the name means “Milky Way”) has been the world’s fastest number-cruncher since it debuted on the June 2013 TOP500 list.

The implementation scheme of the second phase of Tienhe-2 was evaluated and approved in July 2014. The original plan was to use next-generation Intel Xeon Phi (Knights Landing) processors for the upgrade path but due to export blocks put in place by the US, China was stimulated to accelerate its native chip development efforts. The new plan relies on Chinese made processors. “The development of the new FeiTeng processor is underway and we are waiting for the processor to upgrade the Tianhe-2 system,” said Professor Quin.

The second 100 petaflops system (Sunway) will use the next-generation Chinese-made ShenWei chips and will be implemented together with a general purpose cluster system of 1 petaflops performance. This configuration is designed to meet a wide variety of application requirements.

Both systems were developed under the auspices of China’s 12th five-year plan (2011 to 2015). Also under this program, China has been exploring new operation models and mechanism for CNGrid (China’s national HPC environment) and developing cloud-like application villages over CNGrid to promote applications.

CNGrid

The CNGrid service environment is a major resource of computing and storage across China. Currently, this environment is enabled by the CNGrid Suite, a software package used for the operation of the environment, Qian noted. There are 14 nodes altogether, more than 8 petaflops aggregated computing power and more than 15 petabytes of storage. The organizers have deployed more than 400 software applications and tools and also use this environment to support more than 1,000 projects.

Domain-oriented application villages are being established on top of CNGrid to provide services to the users. There are three current application villages under development: industrial product design and optimization, new drug discovery and digital media.

China has also deployed a number of parallel software development efforts to support fusion simulation, CFD for aircraft design, drug discovery, rendering for digital media, structural mechanics for large machinery, and simulation for electro-magnetic environment. The level of parallelism required is more than 300,000 cores with an efficiency of more than 30 percent.

Challenges

Depei Qian ASC16 China WeaknessProfessor Qian provided an overview of China’s main weaknesses, the most significant being a gap in kernel technologies and the lack of a suitable accelerator for the Tienhe-2 upgrade on account of the US embargo. “Currently there is no available accelerator to upgrade the system and it’s a major issue from the point of view of the Chinese government,” he said. “We had to change our plan and rely on our own processors. We are in urgent need for the system software, for the domestic processor, for the tool software and also the application software. Without an ecosystem around the domestic processors, we will not succeed in this respect.”

Also noted were a weakness in novel devices — memory storage and network as well as large-scale parallel algorithms and programs, system software, commercial software. “This is a very special phenomenon in China,” said Qian. “Currently China relies on the imported commercial application software, that software is very expensive and also limited in parallelism and limited by regulations. The center in Guangzhou cannot freely purchase system software from the vendor.” The third weakness is one shared by many countries: a talent shortage. “We don’t have enough people to work in HPC because either they only know the IT side or the domain side. We need more talented people that are also cross-disciplinary,” stated Qian.

13th Five-Year Plan Targets Exascale

After updating the continued supercomputing progress being made under the 12th five-year plan, Qian walked through brand-new elements of China’s 13th five-year plan, which puts into motion one of the most ambitious exascale programs in the world. If successful the program will stand up an exaflops (peak) supercomputer by the end of 2020 within a 35 MW power limit.

China is in the midst of overhauling its national research system and restructuring 100 programs into five tracks: Basic research program; mega-research program; key research and development program; enterprise-oriented research program; research centers and talents program.

The new track that is being focused on in the session is the third one – the key research and development program. A proposal for the track-3 key project on HPC was submitted in September 2015 and launched on February 2016.

The primary pillars for the key project are developing exascale computers, promoting computer industry by technology transfer and a China-controlled HPC technology set. The major tasks are next-generation supercomputing development, CNGrid upgrading and transformation, and domain HPC applications development. A robust supercomputing program is seen as a critical for addressing grand challenge problems spanning the environment, energy, climate, medicine, industry and science.

Depei Qian ASC16 Motivations slide

According to Professor Qian, the number one priority task is the development of an exascale supercomputer, based on a multi-objective optimized architecture that balances performance, energy consumption programmability, reliability and cost.

To achieve this goal, China is funding research into novel high performance interconnects with 3-D chip packaging, silicon photonics and on-chip networks. Programming models for heterogeneous computers will emphasize ease in writing programs and exploitation of performance of the heterogeneous architectures.

The program includes the development of prototype systems for verification of the exascale computer technologies. The computer scientists will explore possible exascale computer architectures, interconnects which can support more than 10,000 nodes, and energy efficiency technologies, as power demand is known to be one of the biggest obstacles toward exascale.

The exascale prototype will be about 512 nodes, offering 5-10 teraflops-per-node, 10-20 Gflops/watt, point to point bandwidth greater than 200 Gbps. MPI latency should be less than 1.5 us, said Qian. Development will also include system software and three typical applications that will be used to verify effectiveness.

From there, work will begin on an energy-efficient computing node and a scheme for high-performance processor/accelerator design.

Depei Qian ASC16 exascale key technology slide

“Based on those key technology developments, we will finally build the exascale system,” said Qian. “Our goal is not so ambitious – it is to have exaflops in peak. We are looking for a LINPACK efficiency of greater than 60 percent. Memory is rather limited, about 10 petabytes, with exabyte levels of storage.

“We don’t think we can reach the 20 megawatts system goal in less than five years so our goal is about 35 megawatts for the system; that means 30 Gflops/watt energy efficiency. The expected interconnect performance is greater than 500 Gbps.”

Depei Qian ASC16 exascale system slide

The final goal of the exascale program is technology transfer. Qian said that China will work to field high-end domain-oriented servers based on exascale system technologies. These servers will take advantage of the advances at the node, the interconnect, scalable I/O, storage, energy savings, reliability and application software.

The professor also spoke at length about China’s software strategies.”We cannot distinguish key technologies from applications, so there will be a joint effort in this direction.” Demo applications span a numerical nuclear reactor, a numerical aircraft, a numerical earth and a numerical engine.

The plan is to transfer some of the software into products to be adopted by a minimum of 50 users. To support this effort, China will establish three national-level research and development centers for HPC application software.

The professor emphasized that China’s “self-control” strategy to eliminate dependence on foreign tech doesn’t just refer to the processor and other hardware. “One of the efforts reflected in our plan is to develop parallel algorithms and parallel libraries for the system to improve the capability of developing modern-scale systems,” he said.

The final new element of China’s renovated program is the development of a platform for education that will provide computing resources and service to undergraduate and graduate students.

A call for proposals for the new key project was issued on February 19, 2016. The proposals will be reviewed over the next two months and then the selected projects will be announced.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire