China Sets Ambitious Goal to Reach Exascale by 2020

By Tiffany Trader

May 2, 2016

At the 12th HPC Connections Workshop in Wuhan, China, Beihang University Professor Depei Qian disclosed new information regarding HPC development in China and exascale plans that are shaping up under China’s 13th five-year plan (2016-2020). Since 1996 Professor Professor Qian has served on the expert committee for the National High-tech Research & Development Program (the 863 program). Currently, he is the chief scientist of the 863 key project on high productivity computer and application service environment.

Professor Qian acknowledged that despite export restrictions on processor and software technology imposed by the US, work continues on two 100 petaflops (peak) systems: the next iteration of Tianhe-2, installed at the National Supercomputer Center in Guangzhou, and the upcoming Sunway system coming to the Jiangnan Institute of Computer Technology in Wuxi, China, near Shanghai. The official line is that these systems will be ready “by the end of the year,” but there have been rumblings that one or both of these systems will be introduced during the ISC’16 event in June.

In a Tuesday session at ISC, Professor Dr. Guangwen Yang, the director of the National Supercomputer Center at Wuxi, China, is slated to deliver talk titled “The New Sunway Supercomputer System at Wuxi.” Dr. Yang will describe the hardware and software elements that make up the system and some of the applications that will be deployed on it. A notice for that talk mentions that the system will be formally announced this summer.

China has been known to play its cards close to the vest before and launched its current supercomputing star, Tianhe-2, two years ahead of schedule. With a theoretical peak speed of 54.9 petaflops and a LINPACK rating of 33.86 petaflops, Tianhe-2 (the name means “Milky Way”) has been the world’s fastest number-cruncher since it debuted on the June 2013 TOP500 list.

The implementation scheme of the second phase of Tienhe-2 was evaluated and approved in July 2014. The original plan was to use next-generation Intel Xeon Phi (Knights Landing) processors for the upgrade path but due to export blocks put in place by the US, China was stimulated to accelerate its native chip development efforts. The new plan relies on Chinese made processors. “The development of the new FeiTeng processor is underway and we are waiting for the processor to upgrade the Tianhe-2 system,” said Professor Quin.

The second 100 petaflops system (Sunway) will use the next-generation Chinese-made ShenWei chips and will be implemented together with a general purpose cluster system of 1 petaflops performance. This configuration is designed to meet a wide variety of application requirements.

Both systems were developed under the auspices of China’s 12th five-year plan (2011 to 2015). Also under this program, China has been exploring new operation models and mechanism for CNGrid (China’s national HPC environment) and developing cloud-like application villages over CNGrid to promote applications.

CNGrid

The CNGrid service environment is a major resource of computing and storage across China. Currently, this environment is enabled by the CNGrid Suite, a software package used for the operation of the environment, Qian noted. There are 14 nodes altogether, more than 8 petaflops aggregated computing power and more than 15 petabytes of storage. The organizers have deployed more than 400 software applications and tools and also use this environment to support more than 1,000 projects.

Domain-oriented application villages are being established on top of CNGrid to provide services to the users. There are three current application villages under development: industrial product design and optimization, new drug discovery and digital media.

China has also deployed a number of parallel software development efforts to support fusion simulation, CFD for aircraft design, drug discovery, rendering for digital media, structural mechanics for large machinery, and simulation for electro-magnetic environment. The level of parallelism required is more than 300,000 cores with an efficiency of more than 30 percent.

Challenges

Depei Qian ASC16 China WeaknessProfessor Qian provided an overview of China’s main weaknesses, the most significant being a gap in kernel technologies and the lack of a suitable accelerator for the Tienhe-2 upgrade on account of the US embargo. “Currently there is no available accelerator to upgrade the system and it’s a major issue from the point of view of the Chinese government,” he said. “We had to change our plan and rely on our own processors. We are in urgent need for the system software, for the domestic processor, for the tool software and also the application software. Without an ecosystem around the domestic processors, we will not succeed in this respect.”

Also noted were a weakness in novel devices — memory storage and network as well as large-scale parallel algorithms and programs, system software, commercial software. “This is a very special phenomenon in China,” said Qian. “Currently China relies on the imported commercial application software, that software is very expensive and also limited in parallelism and limited by regulations. The center in Guangzhou cannot freely purchase system software from the vendor.” The third weakness is one shared by many countries: a talent shortage. “We don’t have enough people to work in HPC because either they only know the IT side or the domain side. We need more talented people that are also cross-disciplinary,” stated Qian.

13th Five-Year Plan Targets Exascale

After updating the continued supercomputing progress being made under the 12th five-year plan, Qian walked through brand-new elements of China’s 13th five-year plan, which puts into motion one of the most ambitious exascale programs in the world. If successful the program will stand up an exaflops (peak) supercomputer by the end of 2020 within a 35 MW power limit.

China is in the midst of overhauling its national research system and restructuring 100 programs into five tracks: Basic research program; mega-research program; key research and development program; enterprise-oriented research program; research centers and talents program.

The new track that is being focused on in the session is the third one – the key research and development program. A proposal for the track-3 key project on HPC was submitted in September 2015 and launched on February 2016.

The primary pillars for the key project are developing exascale computers, promoting computer industry by technology transfer and a China-controlled HPC technology set. The major tasks are next-generation supercomputing development, CNGrid upgrading and transformation, and domain HPC applications development. A robust supercomputing program is seen as a critical for addressing grand challenge problems spanning the environment, energy, climate, medicine, industry and science.

Depei Qian ASC16 Motivations slide

According to Professor Qian, the number one priority task is the development of an exascale supercomputer, based on a multi-objective optimized architecture that balances performance, energy consumption programmability, reliability and cost.

To achieve this goal, China is funding research into novel high performance interconnects with 3-D chip packaging, silicon photonics and on-chip networks. Programming models for heterogeneous computers will emphasize ease in writing programs and exploitation of performance of the heterogeneous architectures.

The program includes the development of prototype systems for verification of the exascale computer technologies. The computer scientists will explore possible exascale computer architectures, interconnects which can support more than 10,000 nodes, and energy efficiency technologies, as power demand is known to be one of the biggest obstacles toward exascale.

The exascale prototype will be about 512 nodes, offering 5-10 teraflops-per-node, 10-20 Gflops/watt, point to point bandwidth greater than 200 Gbps. MPI latency should be less than 1.5 us, said Qian. Development will also include system software and three typical applications that will be used to verify effectiveness.

From there, work will begin on an energy-efficient computing node and a scheme for high-performance processor/accelerator design.

Depei Qian ASC16 exascale key technology slide

“Based on those key technology developments, we will finally build the exascale system,” said Qian. “Our goal is not so ambitious – it is to have exaflops in peak. We are looking for a LINPACK efficiency of greater than 60 percent. Memory is rather limited, about 10 petabytes, with exabyte levels of storage.

“We don’t think we can reach the 20 megawatts system goal in less than five years so our goal is about 35 megawatts for the system; that means 30 Gflops/watt energy efficiency. The expected interconnect performance is greater than 500 Gbps.”

Depei Qian ASC16 exascale system slide

The final goal of the exascale program is technology transfer. Qian said that China will work to field high-end domain-oriented servers based on exascale system technologies. These servers will take advantage of the advances at the node, the interconnect, scalable I/O, storage, energy savings, reliability and application software.

The professor also spoke at length about China’s software strategies.”We cannot distinguish key technologies from applications, so there will be a joint effort in this direction.” Demo applications span a numerical nuclear reactor, a numerical aircraft, a numerical earth and a numerical engine.

The plan is to transfer some of the software into products to be adopted by a minimum of 50 users. To support this effort, China will establish three national-level research and development centers for HPC application software.

The professor emphasized that China’s “self-control” strategy to eliminate dependence on foreign tech doesn’t just refer to the processor and other hardware. “One of the efforts reflected in our plan is to develop parallel algorithms and parallel libraries for the system to improve the capability of developing modern-scale systems,” he said.

The final new element of China’s renovated program is the development of a platform for education that will provide computing resources and service to undergraduate and graduate students.

A call for proposals for the new key project was issued on February 19, 2016. The proposals will be reviewed over the next two months and then the selected projects will be announced.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This