Chameleon: Why Computer Scientists Need a Cloud of Their Own

By Tiffany Trader

May 5, 2016

Chameleon, the NSF-funded cloud testbed co-located at the University of Chicago and the Texas Advanced Computing Center, has been operating less than one year, but has already contributed to innovative research in the areas of HPC containerization, exascale operating systems and cybersecurity to name a few. To get perspective on this purpose-built testbed and the research it is enabling, we reached out to Principal Investigator Kate Keahey with the University of Chicago Computation Institute and Co-Principal Investigator Dan Stanzione, director of the University of Texas at Austin Texas Advanced Computing Center.

“Chameleon is focused on cloud research,” said Stanzione, “how to build a better cloud – the computer science research aspects of cloud.” Computer scientists require a large-scale open cloud research platform in order to explore concepts in programmable cloud services, system design, and core technologies. Just like renting a house imposes more limits on usage than owning, so is the case for most cloud resources, but Chameleon invites experimentation down to the bare metal.

“It’s not so much a test bed – that’s a slightly confusing name – it’s a scientific instrument,” said Keahey. “Having an experimental testbed for computer science means that users are able to try out and validate their research on those resources. So they come up with a hypothesis, for example, they come up with a new research management algorithm, or a new networking algorithm, or a new approach, a new architecture for either a distributed system or an operating system or a new virtualization system or a new security approach. They come up with all sorts of interesting ideas, which are solutions to the open challenges that we have in computer science right now – and they are able to validate their research on the scientific instrument – that means that if they have a hypothesis that their new algorithm is able to solve something faster or more efficiently, they will be able to get time on the resource and run experiments that prove or disprove that hypothesis.”

What sets Chameleon apart is the level of access and reconfigurability it provides. “The type of research that computer science needs is a little bit different than the type of research that domain scientists plan on,” Keahey explained. “Domain scientists execute their codes and they don’t need to recompile the kernel. They don’t need deep and invasive access to the resource; computer scientists do. It’s a scientific instrument for computer science where computer scientists can prove or disprove hypotheses.”

Stanzione also emphasized this aspect of complete control. “Although Chameleon isn’t as big as say Stampede is here, there’s no way we would give a researcher the kind of control that we give them on Stampede that we give them on Chameleon because we’re supporting production science for so many years,” he said. “In my many years of operating large-scale HPC facilities, the one group that we consistently have to say no to are the computer science researchers because they want to make changes at a level that might impact other users on the system or make the system unstable – things we’ve just never been able to change. So Chameleon is really the first system where we can really say yes to that system software research community or CS research community that wants to make basic changes to the way the machine operates.”Chameleon hardware slide

The environment consists of 650 multi-core cloud nodes (~14,500 cores), 5PB of total disk space over the two sites, and a 100 Gbps connection between the sites. The current homogeneous hardware support large-scale experiments, but an upgrade is planned to add heterogeneous units allowing further experimentation with high-memory, large-disk, low-power, GPU, and coprocessor units. “Later on this year, we’re going to have GPUs for the scientists who want to experiment with accelerators. We’re going to get ARM processors for experiments in energy efficiency. We’re going to get Atoms and other sorts of interesting heterogeneous hardware,” said Keahey.

The Chameleon user base has expanded to 600 researchers conducting more than 150 projects. Chameleon allows users to configure and test different cloud architectures on a range of problems, including machine learning and adaptive operating systems, climate simulations, flood prediction and many others. A lot of these problems have a scale element to them and supporting research at multiple-scales was a key organizing principle for Chameleon.

“If you look at the interesting problems in computer science, they all have to do with scale,” commented Keahey. “There are problems with big data; there are very interesting problems about how cloud or the innovations introduced by infrastructure clouds relate to high-performance computing. For example, are we going to continue to run the high-performance computing datacenters the way we always did as batch computing type of centers or are we going to have on-demand access?”

“The price of instruments is falling and small sensors, personal devices, wearable Internet-connected devices and other Internet-of-Things elements in tandem with social media feeds are generating enormous quantities of data,” Keahey continued. “It’s not always just big data, it’s sometimes small pieces of data that get generated all the time and they accumulate, but our insight, our capability to instrument our environment now has become unprecedented and it will just continue to grow. And so the question now is what new data processing patterns it introduces, how do we interact with this highly instrumented environment? These are all interesting research questions in computer science and all of them have an element of scale.”

Most projects are using multiple nodes to several racks, but there aren’t too many using the full system, said Stanzione. He added that researchers who are accessing Chameleon have already done the single node work and are trying to show some scale up. Chameleon runs its own allocation process and interested researchers apply directly through the Chameleon web portal.

One of the Chameleon users is a student, Yuyu Zhou from the University of Pittsburg. Zhou has been comparing the performance between containers and virtualization as a prelude to doing research on this type of middle ground solution.

Zhou along with John Lange (also with the University of Pittsburgh) and Argonne computer scientists Kate Keahey and Balaji Subramaniam presented a poster at SC15 which documents how they used Chameleon to understand the applicability of virtualization (exemplified by KVM) and containerization (exemplified by Docker) technologies to HPC applications. The team used five microbenchmarks and three microapplications as test cases. The results (view the PDF poster here) show Docker performing better than KVM in most cases — often on par with bare metal. The next step for Zhou is to scale out to more nodes and investigate the root causes for the results. She also wants to understand how co-location affects performance.

“It’s a very interesting project on Chameleon and a good example of a project that really needs access to scale because in order to isolate the effects of noise, for example, you need to run on many nodes – and Zhou has been able to run on hundreds of nodes of Chameleon to validate her various hypotheses,” said Keahey.

Another interesting user story came out of a project based class at the University of Arizona that was running a code to search for exoplanets. Processing the image data to identify the unique signature of a planet requires months of time on a desktop machine. The students turned to cloud computing, which offered the option to parallelize the workflows to speed processing. They opted to use Chameleon rather than a public cloud or campus resource because of the fine-grained control it offered. Using Chameleon and a custom research appliance that they developed, called Find-R, the researchers were able to reduce the run time from four-months down to a manageable 24-48 hour period. The code for the research appliance has been made available to the community via GitHub.

Researchers are even using Chameleon to fight data breaches. As this research highlight notes, a team of cybersecurity researchers at the University of Arkansas at Pine Bluff, North Carolina AT&T State University, and Louisiana State University were able to simulate malicious attacks, and then develop and test their approaches on Chameleon. The project explored three scenarios: attacks from outside the cloud, attacks from inside the cloud and a simultaneous attack. The researchers are working to fortify intrusion detection systems and make them more effective against multi-stage intrusion attacks. The team has already written and presented several papers and is looking to form partnerships with Oracle, Cisco Systems, and Microsoft.

The Exascale Connection – Argo

Chameleon is also a key resource for the Argo project, a three-year effort to design and prototype an exascale operating system and runtime. Funded by the Department of Energy, the project spans 40 researchers from three national laboratories and four universities.

As reported by Makeda Easter, Swann Perarnau, a postdoctoral researcher at Argonne National Laboratory, and collaborator on the Argo Project, deployed a small cluster on top of Chameleon that allowed him to test the four major innovations that make up Argo — 1) the Global Operating System, 2) the Node operating system, 3) the concurrency runtime, and 4) the backplane (BEACON).

Being able to use CHI, Chameleon’s provisioning software based largely on OpenStack, was essential for the project’s success. “We wanted to validate the entire project, including the NodeOS that is based on patches to the Linux kernel,” said Perarnau. “There’s not a lot of places we can do that — HPC machines in production are strictly controlled, and nobody will let us modify such a critical component.” The Argo system is expected to form the basis of next-generation, leadership-class machines, deployed in the 2018-2020 timeframe.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Quinn in a presentation delivered to the 79th HPC User Forum Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watch. McVeigh shares Intel's plans for the year ahead, his pers Read more…

AWS Solution Channel

Shutterstock 152995403

Bayesian ML Models at Scale with AWS Batch

This post was contributed by Ampersand’s Jeffrey Enos, Senior Machine Learning Engineer, Daniel Gerlanc, Senior Director for Data Science, and Brandon Willard, Data Science Lead. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 261863138

Using Cloud-Based, GPU-Accelerated AI for Financial Risk Management

There are strict rules governing financial institutions with a number of global regulatory groups publishing financial compliance requirements. Financial institutions face many challenges and legal responsibilities for risk management, compliance violations, and failure to catch financial fraud. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Intel CPUs and GPUs across multiple partitions. The newly reimag Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watc Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

D-Wave Debuts Advantage2 Prototype; Seeks User Exploration and Feedback

June 16, 2022

Starting today, D-Wave Systems is providing access to a 500-plus-qubit prototype of its forthcoming 7000-qubit Advantage2 quantum annealing computer, which is d Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Covid Policies at HPC Conferences Should Reflect HPC Research

June 6, 2022

Supercomputing has been indispensable throughout the Covid-19 pandemic, from modeling the virus and its spread to designing vaccines and therapeutics. But, desp Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire