Chameleon: Why Computer Scientists Need a Cloud of Their Own

By Tiffany Trader

May 5, 2016

Chameleon, the NSF-funded cloud testbed co-located at the University of Chicago and the Texas Advanced Computing Center, has been operating less than one year, but has already contributed to innovative research in the areas of HPC containerization, exascale operating systems and cybersecurity to name a few. To get perspective on this purpose-built testbed and the research it is enabling, we reached out to Principal Investigator Kate Keahey with the University of Chicago Computation Institute and Co-Principal Investigator Dan Stanzione, director of the University of Texas at Austin Texas Advanced Computing Center.

“Chameleon is focused on cloud research,” said Stanzione, “how to build a better cloud – the computer science research aspects of cloud.” Computer scientists require a large-scale open cloud research platform in order to explore concepts in programmable cloud services, system design, and core technologies. Just like renting a house imposes more limits on usage than owning, so is the case for most cloud resources, but Chameleon invites experimentation down to the bare metal.

“It’s not so much a test bed – that’s a slightly confusing name – it’s a scientific instrument,” said Keahey. “Having an experimental testbed for computer science means that users are able to try out and validate their research on those resources. So they come up with a hypothesis, for example, they come up with a new research management algorithm, or a new networking algorithm, or a new approach, a new architecture for either a distributed system or an operating system or a new virtualization system or a new security approach. They come up with all sorts of interesting ideas, which are solutions to the open challenges that we have in computer science right now – and they are able to validate their research on the scientific instrument – that means that if they have a hypothesis that their new algorithm is able to solve something faster or more efficiently, they will be able to get time on the resource and run experiments that prove or disprove that hypothesis.”

What sets Chameleon apart is the level of access and reconfigurability it provides. “The type of research that computer science needs is a little bit different than the type of research that domain scientists plan on,” Keahey explained. “Domain scientists execute their codes and they don’t need to recompile the kernel. They don’t need deep and invasive access to the resource; computer scientists do. It’s a scientific instrument for computer science where computer scientists can prove or disprove hypotheses.”

Stanzione also emphasized this aspect of complete control. “Although Chameleon isn’t as big as say Stampede is here, there’s no way we would give a researcher the kind of control that we give them on Stampede that we give them on Chameleon because we’re supporting production science for so many years,” he said. “In my many years of operating large-scale HPC facilities, the one group that we consistently have to say no to are the computer science researchers because they want to make changes at a level that might impact other users on the system or make the system unstable – things we’ve just never been able to change. So Chameleon is really the first system where we can really say yes to that system software research community or CS research community that wants to make basic changes to the way the machine operates.”Chameleon hardware slide

The environment consists of 650 multi-core cloud nodes (~14,500 cores), 5PB of total disk space over the two sites, and a 100 Gbps connection between the sites. The current homogeneous hardware support large-scale experiments, but an upgrade is planned to add heterogeneous units allowing further experimentation with high-memory, large-disk, low-power, GPU, and coprocessor units. “Later on this year, we’re going to have GPUs for the scientists who want to experiment with accelerators. We’re going to get ARM processors for experiments in energy efficiency. We’re going to get Atoms and other sorts of interesting heterogeneous hardware,” said Keahey.

The Chameleon user base has expanded to 600 researchers conducting more than 150 projects. Chameleon allows users to configure and test different cloud architectures on a range of problems, including machine learning and adaptive operating systems, climate simulations, flood prediction and many others. A lot of these problems have a scale element to them and supporting research at multiple-scales was a key organizing principle for Chameleon.

“If you look at the interesting problems in computer science, they all have to do with scale,” commented Keahey. “There are problems with big data; there are very interesting problems about how cloud or the innovations introduced by infrastructure clouds relate to high-performance computing. For example, are we going to continue to run the high-performance computing datacenters the way we always did as batch computing type of centers or are we going to have on-demand access?”

“The price of instruments is falling and small sensors, personal devices, wearable Internet-connected devices and other Internet-of-Things elements in tandem with social media feeds are generating enormous quantities of data,” Keahey continued. “It’s not always just big data, it’s sometimes small pieces of data that get generated all the time and they accumulate, but our insight, our capability to instrument our environment now has become unprecedented and it will just continue to grow. And so the question now is what new data processing patterns it introduces, how do we interact with this highly instrumented environment? These are all interesting research questions in computer science and all of them have an element of scale.”

Most projects are using multiple nodes to several racks, but there aren’t too many using the full system, said Stanzione. He added that researchers who are accessing Chameleon have already done the single node work and are trying to show some scale up. Chameleon runs its own allocation process and interested researchers apply directly through the Chameleon web portal.

One of the Chameleon users is a student, Yuyu Zhou from the University of Pittsburg. Zhou has been comparing the performance between containers and virtualization as a prelude to doing research on this type of middle ground solution.

Zhou along with John Lange (also with the University of Pittsburgh) and Argonne computer scientists Kate Keahey and Balaji Subramaniam presented a poster at SC15 which documents how they used Chameleon to understand the applicability of virtualization (exemplified by KVM) and containerization (exemplified by Docker) technologies to HPC applications. The team used five microbenchmarks and three microapplications as test cases. The results (view the PDF poster here) show Docker performing better than KVM in most cases — often on par with bare metal. The next step for Zhou is to scale out to more nodes and investigate the root causes for the results. She also wants to understand how co-location affects performance.

“It’s a very interesting project on Chameleon and a good example of a project that really needs access to scale because in order to isolate the effects of noise, for example, you need to run on many nodes – and Zhou has been able to run on hundreds of nodes of Chameleon to validate her various hypotheses,” said Keahey.

Another interesting user story came out of a project based class at the University of Arizona that was running a code to search for exoplanets. Processing the image data to identify the unique signature of a planet requires months of time on a desktop machine. The students turned to cloud computing, which offered the option to parallelize the workflows to speed processing. They opted to use Chameleon rather than a public cloud or campus resource because of the fine-grained control it offered. Using Chameleon and a custom research appliance that they developed, called Find-R, the researchers were able to reduce the run time from four-months down to a manageable 24-48 hour period. The code for the research appliance has been made available to the community via GitHub.

Researchers are even using Chameleon to fight data breaches. As this research highlight notes, a team of cybersecurity researchers at the University of Arkansas at Pine Bluff, North Carolina AT&T State University, and Louisiana State University were able to simulate malicious attacks, and then develop and test their approaches on Chameleon. The project explored three scenarios: attacks from outside the cloud, attacks from inside the cloud and a simultaneous attack. The researchers are working to fortify intrusion detection systems and make them more effective against multi-stage intrusion attacks. The team has already written and presented several papers and is looking to form partnerships with Oracle, Cisco Systems, and Microsoft.

The Exascale Connection – Argo

Chameleon is also a key resource for the Argo project, a three-year effort to design and prototype an exascale operating system and runtime. Funded by the Department of Energy, the project spans 40 researchers from three national laboratories and four universities.

As reported by Makeda Easter, Swann Perarnau, a postdoctoral researcher at Argonne National Laboratory, and collaborator on the Argo Project, deployed a small cluster on top of Chameleon that allowed him to test the four major innovations that make up Argo — 1) the Global Operating System, 2) the Node operating system, 3) the concurrency runtime, and 4) the backplane (BEACON).

Being able to use CHI, Chameleon’s provisioning software based largely on OpenStack, was essential for the project’s success. “We wanted to validate the entire project, including the NodeOS that is based on patches to the Linux kernel,” said Perarnau. “There’s not a lot of places we can do that — HPC machines in production are strictly controlled, and nobody will let us modify such a critical component.” The Argo system is expected to form the basis of next-generation, leadership-class machines, deployed in the 2018-2020 timeframe.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire