TGAC Installs largest SGI UV 300 Supercomputer for Life Sciences

By John Russell

May 11, 2016

Two weeks ago, The Genome Analysis Centre (TGAC) based in the U.K. turned on the first of two new SGI UV300 computers. Next week, or thereabouts, TGAC will bring a second identical system online. Combined with its existing SGI UV2000, TGAC will have the largest SGI system dedicated to life sciences in the world. The upgrade will allow TGAC to significantly shorten the time required to assemble wheat genomes, a core activity in TGAC efforts to enhance worldwide food security.

The upgrade is part of TGAC’s central mission to use advanced HPC and bioinformatics to seek solutions to the world food productivity challenge. TGAC’s specialty is wheat, which is a major base component of the world’s food supply.

It turns out the wheat genome is notoriously difficult to work with. For starters, it contains roughly 17 gigabases (nucleotide pairs), which is five times the size of the human genome. The wheat genome contains 80 percent ‘repeats’ – sections of DNA sequence that are especially difficult to assemble and confound most sequencing algorithms. Lastly, the wheat genome is hexaploid, meaning it has six sets of chromosomes versus two for the human genome – the thinking here is that modern wheat is a kind combination of three ancestral strains.

All boiled down, wheat is tough to deal with from a sequence assembly perspective, and when TGAC help produced the first draft of the complete wheat genome a year or so ago, it was heralded as a major achievement.

TGAC SGI wheat genome graphic 385xUnfortunately the world’s wheat yields have been declining for a variety of reasons. “Our work – through genome assembly, alignment, and variant calling – is to help work out what the [gene] functions are and to get that data back to the research community and breeders who hopefully can breed new types of wheat that are less susceptible to heat and pathogens, etc.,” said Tim Stitt, Head of Scientific Computing at TGAC.

Not surprisingly high performance computing is critical to TGAC’s effort. “Because of the work that we do and its size and scale, we need to cutting edge technologies to be able to handle the work quickly and effectively.” TGAC was, for example, one of the first major genomics centers to deploy the specialized FPGA-based DRAGEN processor to accelerate alignment and variant calling. “Alignment used to take 3-4 day, now it takes 3-4 hours using the FPGA,” said Stitt.

By comparison, genome assembly is more difficult than alignment, especially so called de novo sequencing which doesn’t use a reference genome as a guide. On TGAC’s earlier systems, it was taking four weeks to assemble a wheat genome. The new UV300s, which replace a pair of aging UV100s, have been especially configured for assembly work (memory, processor speed) and are expected to shorten the time required to assemble wheat genomes to less than three weeks.

Here’s a brief overview of the new machines:

  • This new TGAC platform comprises two SGI UV 300 systems totaling 24 terabytes (TB) of shared-memory, 512 Intel Xeon Processor E7 v3 cores and 64TB of Intel P3700 SSDs with NVMe storage technology. Each SGI UV 300 flash memory solution features 12TB of shared memory with 7th generation SGI NUMAlink ASIC technology, scaling up to 64 TB of global addressable memory as a single system.
  • Paired with flash storage, the combined 24TB SGI UV 300 supercomputers can increase processing speeds of heavy workloads in scientific research by 80 percent. This combination of leading-edge technology allows TGAC researchers to benefit from the faster processing capabilities of the SGI UV 300, providing an extraordinarily powerful platform for genomics analysis.

“Having a shared memory server is an important element,” said Stitt. “A single assembly typically requires 4-6TB of RAM. What’s somewhat unique about this platform compared to the previous ones are the 32 TB of solid state drives (per machine) with NVME. That should give us a significant boost on the IO side. Our wheat files can be close to 1TB in size and must be read into memory.”

SGI UV300
SGI UV300

Besides memory enhancement, the jump to E7 v3 processors was a major step up from the Sandy Bridge processors in the UV100. “We’ve essentially skipped a generation – Ivy Bridge – and gone straight to Haswell. That alone would give us a boost in performance. Really it’s the whole package – memory, processors, storage, etc. The UV100s were purchased five or six years ago and that’s a lifetime in HPC.”

TGAC runs multiple jobs on SGI computers and is in the process of switching schedulers. Altair’s PBS is used on the old system, but Stitt is transitioning to Slurm, which is being used on the new UV300 that’s running. They both work well, said Stitt. “We’ve evaluated Slurm over past 6 – 8 months. It worked very well for what we want to do and it’s free. Really it was a cost decision and may free up revenue we’d normally spend on licenses and allow us to put it towards more hardware.”

Stitt notes the new UV300 solutions are considerably more dense that the older machines, “The UV300 comes in 5U rack space; the UV100 with effectively less memory, fewer cores, probably took over a rack of space.” He’s expecting greater energy efficiency as a result.

Researchers are still in the early stages of using the first UV300, said Stitt, who like HPC managers throughout life sciences must serve a diverse researcher constituency, many of whom aren’t comfortable with command line tools. “You need to know a little but about Linux to log into our HPC systems. A lot of our users, particularly our external users, don’t have backgrounds in programming and Linux and command lines and things,” Stitt said.

To make things easer, TGAC also allows users to use tools like Galaxy as a front end to the systems. “These researchers can access our systems through the Galaxy interface where they can set up workflows and Galaxy will launch them on the back end. Actually, we have a whole research team that works on data integration and the equivalent of scientific portals to help here.”

TACC_logo-240x62.pngAlong the line of reaching the maximum number of researchers, TGAC is in the midst of a project to forge closer ties with iPlant, a U.S.-based effort also tackling worldwide food production and agriculture. A few key iPlant organization and mission points are bulleted here:

  • Established by the U.S. National Science Foundation (NSF) in 2008 to develop cyberinfrastructure for life sciences research and democratize access to U.S. supercomputing capabilities.
  • A virtual organization lead by The University of Arizona, Texas Advanced Computing Center, Cold Spring Harbor Laboratory, and University of North Carolina at Wilmington.
  • Developing the national cyberinfrastructure for data-intensive biology driven by high-throughput sequencing, phenotypic and environmental datasets.
  • Providing powerful extensible platforms for data storage, bioinformatics, image analyses, cloud services, APIs, and more.
  • Making broadly applicable cyberinfrastructure resources available across the life science disciplines (e.g., plants, animals, and microbes).

“We won an award recently to build an iPlant U.K. here at TGAC. We’re working with iPlant folks to put together an iPlant infrastructure and at some point hopefully federate the two sites together. It’s a big project that we are halfway through,” said Stitt. The goal is to facilitate and speed dissemination of TGAC result by having an open system for sharing data.

Stitt is also working to make better use of the DRAGEN FPGA system, “It’s working brilliantly and we certainly haven’t exceeded our limits on it. We are expecting to generate more data coming from new lines of wheat and our interest lies is streamlining the two technologies – the DRAGEN chip with the SGI system.” That’s part of TGAC’s IO challenge generally. “We have raw data coming off the sequencing machines that we need to get onto the SGI platform, particularly the SSD drives. That data is used to generate an assembly, which we’ll store on our file system, and we need to pipe that into our DRAGEN FPGA [which sits on another system.]”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and su Read more…

By Rob Johnson

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

How Fast is Your Rubik Solver; This One’s Probably Faster

July 18, 2019

In the race to solve Rubik’s Cube, the time-to-finish keeps shrinking. This year Philipp Weyer from Germany won the 10th World Cube Association (WCA) Championship held in Melbourne, Australia, with a 6.74-second perfo Read more…

By John Russell

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This