TGAC Installs largest SGI UV 300 Supercomputer for Life Sciences

By John Russell

May 11, 2016

Two weeks ago, The Genome Analysis Centre (TGAC) based in the U.K. turned on the first of two new SGI UV300 computers. Next week, or thereabouts, TGAC will bring a second identical system online. Combined with its existing SGI UV2000, TGAC will have the largest SGI system dedicated to life sciences in the world. The upgrade will allow TGAC to significantly shorten the time required to assemble wheat genomes, a core activity in TGAC efforts to enhance worldwide food security.

The upgrade is part of TGAC’s central mission to use advanced HPC and bioinformatics to seek solutions to the world food productivity challenge. TGAC’s specialty is wheat, which is a major base component of the world’s food supply.

It turns out the wheat genome is notoriously difficult to work with. For starters, it contains roughly 17 gigabases (nucleotide pairs), which is five times the size of the human genome. The wheat genome contains 80 percent ‘repeats’ – sections of DNA sequence that are especially difficult to assemble and confound most sequencing algorithms. Lastly, the wheat genome is hexaploid, meaning it has six sets of chromosomes versus two for the human genome – the thinking here is that modern wheat is a kind combination of three ancestral strains.

All boiled down, wheat is tough to deal with from a sequence assembly perspective, and when TGAC help produced the first draft of the complete wheat genome a year or so ago, it was heralded as a major achievement.

TGAC SGI wheat genome graphic 385xUnfortunately the world’s wheat yields have been declining for a variety of reasons. “Our work – through genome assembly, alignment, and variant calling – is to help work out what the [gene] functions are and to get that data back to the research community and breeders who hopefully can breed new types of wheat that are less susceptible to heat and pathogens, etc.,” said Tim Stitt, Head of Scientific Computing at TGAC.

Not surprisingly high performance computing is critical to TGAC’s effort. “Because of the work that we do and its size and scale, we need to cutting edge technologies to be able to handle the work quickly and effectively.” TGAC was, for example, one of the first major genomics centers to deploy the specialized FPGA-based DRAGEN processor to accelerate alignment and variant calling. “Alignment used to take 3-4 day, now it takes 3-4 hours using the FPGA,” said Stitt.

By comparison, genome assembly is more difficult than alignment, especially so called de novo sequencing which doesn’t use a reference genome as a guide. On TGAC’s earlier systems, it was taking four weeks to assemble a wheat genome. The new UV300s, which replace a pair of aging UV100s, have been especially configured for assembly work (memory, processor speed) and are expected to shorten the time required to assemble wheat genomes to less than three weeks.

Here’s a brief overview of the new machines:

  • This new TGAC platform comprises two SGI UV 300 systems totaling 24 terabytes (TB) of shared-memory, 512 Intel Xeon Processor E7 v3 cores and 64TB of Intel P3700 SSDs with NVMe storage technology. Each SGI UV 300 flash memory solution features 12TB of shared memory with 7th generation SGI NUMAlink ASIC technology, scaling up to 64 TB of global addressable memory as a single system.
  • Paired with flash storage, the combined 24TB SGI UV 300 supercomputers can increase processing speeds of heavy workloads in scientific research by 80 percent. This combination of leading-edge technology allows TGAC researchers to benefit from the faster processing capabilities of the SGI UV 300, providing an extraordinarily powerful platform for genomics analysis.

“Having a shared memory server is an important element,” said Stitt. “A single assembly typically requires 4-6TB of RAM. What’s somewhat unique about this platform compared to the previous ones are the 32 TB of solid state drives (per machine) with NVME. That should give us a significant boost on the IO side. Our wheat files can be close to 1TB in size and must be read into memory.”

SGI UV300
SGI UV300

Besides memory enhancement, the jump to E7 v3 processors was a major step up from the Sandy Bridge processors in the UV100. “We’ve essentially skipped a generation – Ivy Bridge – and gone straight to Haswell. That alone would give us a boost in performance. Really it’s the whole package – memory, processors, storage, etc. The UV100s were purchased five or six years ago and that’s a lifetime in HPC.”

TGAC runs multiple jobs on SGI computers and is in the process of switching schedulers. Altair’s PBS is used on the old system, but Stitt is transitioning to Slurm, which is being used on the new UV300 that’s running. They both work well, said Stitt. “We’ve evaluated Slurm over past 6 – 8 months. It worked very well for what we want to do and it’s free. Really it was a cost decision and may free up revenue we’d normally spend on licenses and allow us to put it towards more hardware.”

Stitt notes the new UV300 solutions are considerably more dense that the older machines, “The UV300 comes in 5U rack space; the UV100 with effectively less memory, fewer cores, probably took over a rack of space.” He’s expecting greater energy efficiency as a result.

Researchers are still in the early stages of using the first UV300, said Stitt, who like HPC managers throughout life sciences must serve a diverse researcher constituency, many of whom aren’t comfortable with command line tools. “You need to know a little but about Linux to log into our HPC systems. A lot of our users, particularly our external users, don’t have backgrounds in programming and Linux and command lines and things,” Stitt said.

To make things easer, TGAC also allows users to use tools like Galaxy as a front end to the systems. “These researchers can access our systems through the Galaxy interface where they can set up workflows and Galaxy will launch them on the back end. Actually, we have a whole research team that works on data integration and the equivalent of scientific portals to help here.”

TACC_logo-240x62.pngAlong the line of reaching the maximum number of researchers, TGAC is in the midst of a project to forge closer ties with iPlant, a U.S.-based effort also tackling worldwide food production and agriculture. A few key iPlant organization and mission points are bulleted here:

  • Established by the U.S. National Science Foundation (NSF) in 2008 to develop cyberinfrastructure for life sciences research and democratize access to U.S. supercomputing capabilities.
  • A virtual organization lead by The University of Arizona, Texas Advanced Computing Center, Cold Spring Harbor Laboratory, and University of North Carolina at Wilmington.
  • Developing the national cyberinfrastructure for data-intensive biology driven by high-throughput sequencing, phenotypic and environmental datasets.
  • Providing powerful extensible platforms for data storage, bioinformatics, image analyses, cloud services, APIs, and more.
  • Making broadly applicable cyberinfrastructure resources available across the life science disciplines (e.g., plants, animals, and microbes).

“We won an award recently to build an iPlant U.K. here at TGAC. We’re working with iPlant folks to put together an iPlant infrastructure and at some point hopefully federate the two sites together. It’s a big project that we are halfway through,” said Stitt. The goal is to facilitate and speed dissemination of TGAC result by having an open system for sharing data.

Stitt is also working to make better use of the DRAGEN FPGA system, “It’s working brilliantly and we certainly haven’t exceeded our limits on it. We are expecting to generate more data coming from new lines of wheat and our interest lies is streamlining the two technologies – the DRAGEN chip with the SGI system.” That’s part of TGAC’s IO challenge generally. “We have raw data coming off the sequencing machines that we need to get onto the SGI platform, particularly the SSD drives. That data is used to generate an assembly, which we’ll store on our file system, and we need to pipe that into our DRAGEN FPGA [which sits on another system.]”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This