TGAC Installs largest SGI UV 300 Supercomputer for Life Sciences

By John Russell

May 11, 2016

Two weeks ago, The Genome Analysis Centre (TGAC) based in the U.K. turned on the first of two new SGI UV300 computers. Next week, or thereabouts, TGAC will bring a second identical system online. Combined with its existing SGI UV2000, TGAC will have the largest SGI system dedicated to life sciences in the world. The upgrade will allow TGAC to significantly shorten the time required to assemble wheat genomes, a core activity in TGAC efforts to enhance worldwide food security.

The upgrade is part of TGAC’s central mission to use advanced HPC and bioinformatics to seek solutions to the world food productivity challenge. TGAC’s specialty is wheat, which is a major base component of the world’s food supply.

It turns out the wheat genome is notoriously difficult to work with. For starters, it contains roughly 17 gigabases (nucleotide pairs), which is five times the size of the human genome. The wheat genome contains 80 percent ‘repeats’ – sections of DNA sequence that are especially difficult to assemble and confound most sequencing algorithms. Lastly, the wheat genome is hexaploid, meaning it has six sets of chromosomes versus two for the human genome – the thinking here is that modern wheat is a kind combination of three ancestral strains.

All boiled down, wheat is tough to deal with from a sequence assembly perspective, and when TGAC help produced the first draft of the complete wheat genome a year or so ago, it was heralded as a major achievement.

TGAC SGI wheat genome graphic 385xUnfortunately the world’s wheat yields have been declining for a variety of reasons. “Our work – through genome assembly, alignment, and variant calling – is to help work out what the [gene] functions are and to get that data back to the research community and breeders who hopefully can breed new types of wheat that are less susceptible to heat and pathogens, etc.,” said Tim Stitt, Head of Scientific Computing at TGAC.

Not surprisingly high performance computing is critical to TGAC’s effort. “Because of the work that we do and its size and scale, we need to cutting edge technologies to be able to handle the work quickly and effectively.” TGAC was, for example, one of the first major genomics centers to deploy the specialized FPGA-based DRAGEN processor to accelerate alignment and variant calling. “Alignment used to take 3-4 day, now it takes 3-4 hours using the FPGA,” said Stitt.

By comparison, genome assembly is more difficult than alignment, especially so called de novo sequencing which doesn’t use a reference genome as a guide. On TGAC’s earlier systems, it was taking four weeks to assemble a wheat genome. The new UV300s, which replace a pair of aging UV100s, have been especially configured for assembly work (memory, processor speed) and are expected to shorten the time required to assemble wheat genomes to less than three weeks.

Here’s a brief overview of the new machines:

  • This new TGAC platform comprises two SGI UV 300 systems totaling 24 terabytes (TB) of shared-memory, 512 Intel Xeon Processor E7 v3 cores and 64TB of Intel P3700 SSDs with NVMe storage technology. Each SGI UV 300 flash memory solution features 12TB of shared memory with 7th generation SGI NUMAlink ASIC technology, scaling up to 64 TB of global addressable memory as a single system.
  • Paired with flash storage, the combined 24TB SGI UV 300 supercomputers can increase processing speeds of heavy workloads in scientific research by 80 percent. This combination of leading-edge technology allows TGAC researchers to benefit from the faster processing capabilities of the SGI UV 300, providing an extraordinarily powerful platform for genomics analysis.

“Having a shared memory server is an important element,” said Stitt. “A single assembly typically requires 4-6TB of RAM. What’s somewhat unique about this platform compared to the previous ones are the 32 TB of solid state drives (per machine) with NVME. That should give us a significant boost on the IO side. Our wheat files can be close to 1TB in size and must be read into memory.”

SGI UV300
SGI UV300

Besides memory enhancement, the jump to E7 v3 processors was a major step up from the Sandy Bridge processors in the UV100. “We’ve essentially skipped a generation – Ivy Bridge – and gone straight to Haswell. That alone would give us a boost in performance. Really it’s the whole package – memory, processors, storage, etc. The UV100s were purchased five or six years ago and that’s a lifetime in HPC.”

TGAC runs multiple jobs on SGI computers and is in the process of switching schedulers. Altair’s PBS is used on the old system, but Stitt is transitioning to Slurm, which is being used on the new UV300 that’s running. They both work well, said Stitt. “We’ve evaluated Slurm over past 6 – 8 months. It worked very well for what we want to do and it’s free. Really it was a cost decision and may free up revenue we’d normally spend on licenses and allow us to put it towards more hardware.”

Stitt notes the new UV300 solutions are considerably more dense that the older machines, “The UV300 comes in 5U rack space; the UV100 with effectively less memory, fewer cores, probably took over a rack of space.” He’s expecting greater energy efficiency as a result.

Researchers are still in the early stages of using the first UV300, said Stitt, who like HPC managers throughout life sciences must serve a diverse researcher constituency, many of whom aren’t comfortable with command line tools. “You need to know a little but about Linux to log into our HPC systems. A lot of our users, particularly our external users, don’t have backgrounds in programming and Linux and command lines and things,” Stitt said.

To make things easer, TGAC also allows users to use tools like Galaxy as a front end to the systems. “These researchers can access our systems through the Galaxy interface where they can set up workflows and Galaxy will launch them on the back end. Actually, we have a whole research team that works on data integration and the equivalent of scientific portals to help here.”

TACC_logo-240x62.pngAlong the line of reaching the maximum number of researchers, TGAC is in the midst of a project to forge closer ties with iPlant, a U.S.-based effort also tackling worldwide food production and agriculture. A few key iPlant organization and mission points are bulleted here:

  • Established by the U.S. National Science Foundation (NSF) in 2008 to develop cyberinfrastructure for life sciences research and democratize access to U.S. supercomputing capabilities.
  • A virtual organization lead by The University of Arizona, Texas Advanced Computing Center, Cold Spring Harbor Laboratory, and University of North Carolina at Wilmington.
  • Developing the national cyberinfrastructure for data-intensive biology driven by high-throughput sequencing, phenotypic and environmental datasets.
  • Providing powerful extensible platforms for data storage, bioinformatics, image analyses, cloud services, APIs, and more.
  • Making broadly applicable cyberinfrastructure resources available across the life science disciplines (e.g., plants, animals, and microbes).

“We won an award recently to build an iPlant U.K. here at TGAC. We’re working with iPlant folks to put together an iPlant infrastructure and at some point hopefully federate the two sites together. It’s a big project that we are halfway through,” said Stitt. The goal is to facilitate and speed dissemination of TGAC result by having an open system for sharing data.

Stitt is also working to make better use of the DRAGEN FPGA system, “It’s working brilliantly and we certainly haven’t exceeded our limits on it. We are expecting to generate more data coming from new lines of wheat and our interest lies is streamlining the two technologies – the DRAGEN chip with the SGI system.” That’s part of TGAC’s IO challenge generally. “We have raw data coming off the sequencing machines that we need to get onto the SGI platform, particularly the SSD drives. That data is used to generate an assembly, which we’ll store on our file system, and we need to pipe that into our DRAGEN FPGA [which sits on another system.]”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This