Nielsen and Intel Migrate HPC Efficiency and Data Analytics to Big Data

By Rob Farber

May 16, 2016

Nielsen has collaborated with Intel to migrate important pieces of HPC technology into Nielsen’s big-data analytic workflows including MPI, mature numerical libraries from NAG (the Numerical Algorithms Group), as well as custom C++ analytic codes. This complementary hybrid approach integrates the benefits of Hadoop data management and workflow scheduling with an extensive pool of HPC tools and C/C++ capabilities for analytic applications. In particular, the use of MPI reduces latency, permits reuse of the Hadoop servers, and co-locates the MPI applications close to the data.

John Mansour, vice president, Advanced Solutions Group, at Nielsen became interested in the integration of both Hadoop and HPC technology to enable faster, better, and more powerful analysis of the huge volumes of data collected by Nielsen as part of their Consumer Package Goods (CPG) market research. Nielsen is well-known for the ‘Nielsen ratings’ of audience measurement in Television, Radio, and online content. The company also provides Retail Measurement Services (RMS) that track and report on CPG sales around the world to understand sales performance. The success of Nielsen’s efforts are presented in his talk Bridging the Worlds of HPC and Big-Data at Supercomputing 2015.

Nielsen already utilizes the Cloudera Hadoop infrastructure to ingest and manage a daily deluge of data used in their market research. What Nielsen wanted was to make this infrastructure HPC-friendly so the wealth of scientific and data-analytic HPC codes created since the 1960s could be added to the Nielsen set of computational tools. This required integrating MPI (Message Passing Interface), which is the distributed framework utilized by the HPC community, into the Cloudera Hadoop framework. This integration allows Nielsen the choice of using C/C++ MPI in addition to Spark and Map-Reduce for situations that either require the performance or are a team’s preferred language.

Nielsen thinks Integrating Hadoop and MPI brings together the best of two complementary technologies. This integration will provide the data management capabilities of Hadoop with the performance of native MPI applications on the same cluster. Intel and Cloudera plan to provide production support for this integration in future releases of their software while Nielsen continues to explore the possibilities that such an integration will have for their clients.
Nielsen thinks Integrating Hadoop and MPI brings together the best of two complementary technologies. This integration will provide the data management capabilities of Hadoop with the performance of native MPI applications on the same cluster. Intel and Cloudera plan to provide production support for this integration in future releases of their software while Nielsen continues to explore the possibilities that such an integration will have for their clients.

MPI has been designed and refined since the 1990s to remove as much of the communications overhead from distributed HPC applications as possible, while Hadoop and the cloud computing infrastructure in general has been designed to run in a big-way on COTS (Commodity Off The Shelf) hardware where fault- and latency-tolerance is a requirement. A successful integration of the two means that existing MPI and data analytic codes can be ported without having to be re-implemented in another language such as SPARK, and very importantly, the integration can occur without affecting existing operational cloud infrastructure.

The integration, performed in collaboration with Intel, is quite straight-forward from a high-level perspective: simply start a python script that requests resources based on a set of input parameters and writes out a machine file that can be utilized by mpiexec to run the MPI job. The script then starts the MPI run and cleans up resources upon completion.

In actuality, the process is more complicated as it is necessary to ensure the data is in the right place and that errors are correctly handled. Nielsen uses Cloudera’s llama as the application master and yarn as the resource manager.

The performance of MPI in the Nielsen Hadoop framework has been superb and is expected to get even better. In testing with other Hadoop technologies, Nielsen has found MPI to consistently perform better than the others. Speedups come from the use of C/C++, sophisticated numerical libraries such as those offered by the NAG Numerical Algorithms Group and MPI’s design for low-latency communications which help in tightly coupled communications such the reduction operations needed in regressions and machine learning applications. In a future publication Nielsen will provide more detailed performance comparisons but typically see about a factor of between 5 to 10 times in performance compared to SPARK 1.5.1.

All this work to date has been at the proof-of-concept (POC) phase. In particular, high-performance storage I/O has proven to be an issue with significant amounts of runtime – sometimes as much as 85% – being consumed by the data loads. The challenge is that HDFS, which is written in Java, appears to be a bottleneck. Nielsen is experimenting with different technologies including local file systems and new apis such as RecordService and libhdfs3. Unfortunately, there are issues using common MPI data methods like mpiio which present a problem in Hadoop.

In addition to optimizing I/O performance, Nielsen has demonstrated significant performance benefits preloading data into distributed shared memory using BOOST shared memory STL vectors. With a working MPI and ability to integrate existing C/C++ codes, Nielsen has opened the door to a wealth of computational tools and analytic packages. In particular, the NAG library is a well-known, highly-regarded numerical toolkit. For example, NAG offers routines for data cleaning (including imputation and outlier detection), data transformations (scaling, principal component analysis), clustering, classification, regression models and machine learning methods (neural networks, radial basis function, decision trees, nearest neighbors), and association rules plus a plethora of utility functions.

Author Bio:
Rob Farber is a global technology consultant and author with an extensive background in scientific and commercial HPC plus a long history of working with national labs and corporations. He can be reached at [email protected]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Kyoto University ACCMS Implements Fine-grained Power Management

September 19, 2018

Data center power management is a ubiquitous challenge and in few places is it more so than at Kyoto University Academic Center for Computing and Media Studies (ACCMS)) where power consumption limits were imposed followi Read more…

By Staff

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This