Nielsen and Intel Migrate HPC Efficiency and Data Analytics to Big Data

By Rob Farber

May 16, 2016

Nielsen has collaborated with Intel to migrate important pieces of HPC technology into Nielsen’s big-data analytic workflows including MPI, mature numerical libraries from NAG (the Numerical Algorithms Group), as well as custom C++ analytic codes. This complementary hybrid approach integrates the benefits of Hadoop data management and workflow scheduling with an extensive pool of HPC tools and C/C++ capabilities for analytic applications. In particular, the use of MPI reduces latency, permits reuse of the Hadoop servers, and co-locates the MPI applications close to the data.

John Mansour, vice president, Advanced Solutions Group, at Nielsen became interested in the integration of both Hadoop and HPC technology to enable faster, better, and more powerful analysis of the huge volumes of data collected by Nielsen as part of their Consumer Package Goods (CPG) market research. Nielsen is well-known for the ‘Nielsen ratings’ of audience measurement in Television, Radio, and online content. The company also provides Retail Measurement Services (RMS) that track and report on CPG sales around the world to understand sales performance. The success of Nielsen’s efforts are presented in his talk Bridging the Worlds of HPC and Big-Data at Supercomputing 2015.

Nielsen already utilizes the Cloudera Hadoop infrastructure to ingest and manage a daily deluge of data used in their market research. What Nielsen wanted was to make this infrastructure HPC-friendly so the wealth of scientific and data-analytic HPC codes created since the 1960s could be added to the Nielsen set of computational tools. This required integrating MPI (Message Passing Interface), which is the distributed framework utilized by the HPC community, into the Cloudera Hadoop framework. This integration allows Nielsen the choice of using C/C++ MPI in addition to Spark and Map-Reduce for situations that either require the performance or are a team’s preferred language.

Nielsen thinks Integrating Hadoop and MPI brings together the best of two complementary technologies. This integration will provide the data management capabilities of Hadoop with the performance of native MPI applications on the same cluster. Intel and Cloudera plan to provide production support for this integration in future releases of their software while Nielsen continues to explore the possibilities that such an integration will have for their clients.
Nielsen thinks Integrating Hadoop and MPI brings together the best of two complementary technologies. This integration will provide the data management capabilities of Hadoop with the performance of native MPI applications on the same cluster. Intel and Cloudera plan to provide production support for this integration in future releases of their software while Nielsen continues to explore the possibilities that such an integration will have for their clients.

MPI has been designed and refined since the 1990s to remove as much of the communications overhead from distributed HPC applications as possible, while Hadoop and the cloud computing infrastructure in general has been designed to run in a big-way on COTS (Commodity Off The Shelf) hardware where fault- and latency-tolerance is a requirement. A successful integration of the two means that existing MPI and data analytic codes can be ported without having to be re-implemented in another language such as SPARK, and very importantly, the integration can occur without affecting existing operational cloud infrastructure.

The integration, performed in collaboration with Intel, is quite straight-forward from a high-level perspective: simply start a python script that requests resources based on a set of input parameters and writes out a machine file that can be utilized by mpiexec to run the MPI job. The script then starts the MPI run and cleans up resources upon completion.

In actuality, the process is more complicated as it is necessary to ensure the data is in the right place and that errors are correctly handled. Nielsen uses Cloudera’s llama as the application master and yarn as the resource manager.

The performance of MPI in the Nielsen Hadoop framework has been superb and is expected to get even better. In testing with other Hadoop technologies, Nielsen has found MPI to consistently perform better than the others. Speedups come from the use of C/C++, sophisticated numerical libraries such as those offered by the NAG Numerical Algorithms Group and MPI’s design for low-latency communications which help in tightly coupled communications such the reduction operations needed in regressions and machine learning applications. In a future publication Nielsen will provide more detailed performance comparisons but typically see about a factor of between 5 to 10 times in performance compared to SPARK 1.5.1.

All this work to date has been at the proof-of-concept (POC) phase. In particular, high-performance storage I/O has proven to be an issue with significant amounts of runtime – sometimes as much as 85% – being consumed by the data loads. The challenge is that HDFS, which is written in Java, appears to be a bottleneck. Nielsen is experimenting with different technologies including local file systems and new apis such as RecordService and libhdfs3. Unfortunately, there are issues using common MPI data methods like mpiio which present a problem in Hadoop.

In addition to optimizing I/O performance, Nielsen has demonstrated significant performance benefits preloading data into distributed shared memory using BOOST shared memory STL vectors. With a working MPI and ability to integrate existing C/C++ codes, Nielsen has opened the door to a wealth of computational tools and analytic packages. In particular, the NAG library is a well-known, highly-regarded numerical toolkit. For example, NAG offers routines for data cleaning (including imputation and outlier detection), data transformations (scaling, principal component analysis), clustering, classification, regression models and machine learning methods (neural networks, radial basis function, decision trees, nearest neighbors), and association rules plus a plethora of utility functions.

Author Bio:
Rob Farber is a global technology consultant and author with an extensive background in scientific and commercial HPC plus a long history of working with national labs and corporations. He can be reached at info@techenablement.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

First Xeon-FPGA Integration Launched by Intel

May 22, 2018

Ever since Intel’s acquisition of FPGA specialist Altera in 2015 for $16.7 billion, it’s been widely acknowledged that some day, Intel would release a processor that integrates its mainstream Xeon CPU server chip wit Read more…

By Doug Black

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This