IBM Puts 3D XPoint on Notice with 3 Bits/Cell PCM Breakthrough

By Tiffany Trader

May 18, 2016

IBM scientists have broken new ground in the development of a phase change memory technology (PCM) that puts a target on competing 3D XPoint technology from Intel and Micron. IBM successfully stored 3 bits per cell in a 64k-cell array that had been pre-cycled 1 million times and exposed to temperatures up to 75∘C. A paper describing the advance was presented this week at the IEEE International Memory Workshop in Paris.

Phase-change memory is an up-and-coming non-volatile memory technology — a storage-class memory that bridges the divide between expensive performant, volatile memory (namely DRAM), and slower persistent storage (flash or hard disk drives). According to IBM, having the ability to reliably fit 3 bits per cell is what will make this technology price-competitive with flash.

With memory demands riding the tide of big data, phase change memory has a lot to recommend it but to be a market success, the economics must work, say the authors, and being able to store multiple bits per memory cell is essential for keeping costs under control.

Using a combination of electrical sensing techniques and signal processing technologies, the researchers have shown for the first time the the viability of Triple-Level-Cell (TLC) storage in phase-change memory cells. The researchers addressed challenges related to multi-bit PCM including drift, variability, temperature sensitivity and endurance cycling with two innovative enabling technologies:

(a) an advanced, nonresistance cell-state metric that exhibits robustness to drift and PCM noise, and (b) an adaptive level-detection and modulation-coding framework that enables further resilience to drift, noise and temperature variation effects.

IBM-PCM-HarisPozidis-600x
Dr. Haris Pozidis

At the Paris IEEE event, Dr. Haris Pozidis, an author of the paper and the manager of non-volatile memory research at IBM Research – Zurich, explained that phase change memory is based on the properties that a chalcogenide alloy has when heat is applied. A laser pulse is used to switch the ally between its polycrystalline and amorphous (glassy) state. By controlling heating and cooling, one can switch reliably between these two phases, said Pozidis. The principle of storing more bits per cell is based on the fact that the alloy can also exist in an intermediate phase, which is a mixture of a crystalline and amorphous state that gives rise to an intermediate resistance.

“In terms of basic characteristics,” said Pozidis, “phase change memory exhibits latency on the order of hundred nanoseconds to a couple microseconds, compared to hundreds of microseconds to milliseconds for flash, so about three orders of magnitude faster. In terms of write endurance, we have demonstrated one million cycles, but there are other demonstrations that have shown in excess of one million cycles and therefore this brings it to at least 1000x or even more than flash. In terms of cost, this is a crucial attribute, because this is what will pave the way for PCM acceptance in the marketplace, and there PCM is believed to be between DRAM and flash. With this technology of storing 3 bits per cell, we believe that the cost per bit of PCM will potentially approach that of flash today.”

The TLC PCM offers a moderate data retention of 10 days at temperatures as high as 75∘C. Beyond being persistent, IBM’s PCM technology is radiation-hardened and it offers through random access capability and write in place capability unlike flash. It’s also very scalable, noted Pozidis, with research showing PCM properties on materials down to less than 10nm in diameter.

IBM has plans to integrate PCM at a cluster and datacenter level using low-latency networking and support from system software to enable new use cases for data-intensive applications. Strides were made toward this goal at the 2016 OpenPower summit, when IBM scientists demonstrated the attachment of its second-generation phase-change memory to POWER8-based servers via the CAPI protocol. Latency was observed for 128-byte read/write access from/to PCM DIMMs on a POWER8 server. 99 percent of reads completed within 3.9 us.

“Right now it’s a technology that has just seen the light of day in the form of a controlled release,” said IDC analyst Ashish Nadkarni, who was pre-briefed on the announcement, “so it’s going to take some time before it reaches the point [of flash cost parity]. Right now it’s between DRAM and NAND, and it’s more a period of time where it’s inched closer toward the cost of NAND, but as the cost of NAND itself goes down, PCM today is somewhere in the middle and it has to move faster to catch up. I suspect it will take a couple years before it’s comparable. They still need to find suppliers who can manufacture the technology; they need to be able to iron out all the kinks, and the supply chain has to fall in line.”

The IBM effort is competing with 3D XPoint, the non-volatile memory play from Intel and Micron that was announced last summer. Those partners have been less forthcoming with the specifics of the enabling technology, which is speculated to be either ReRAM- or PCM-based, but like IBM’s PCM device, 3D XPoint targets that gap between speedy RAM and high-capacity, low-cost flash. IBM hasn’t publicly announced a partner yet, but it has worked with SK Hynix in the past.

“Clearly there’s going to be a competitive landscape,” Nadkarni reflected. “Samsung might enter the game as well. Intel and Micron have the benefit of being the first born, but they haven’t started shipping yet. For IBM, the benefit they have is they can start deploying it in their own products. Intel and Micron have to find other suppliers who can use the technology in their products. It’s not clear who’s superior today but from IBM’s perspective being able to stuff 3 bits in a single cell is a big deal as is being able to control the state of the bits based on temperature.”

The experiments were carried out on a prototype PCM chip consisting of a 2 × 2 Mcell array of 4 Mcells with a 4-bank interleaving architecture, connected to a standard integrated circuit board. The memory array size is 2 × 1000 μm × 800 μm. The prototype chip uses 90nm CMOS baseline technology.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

South African Weather Service Doubles Compute and Triples Storage Capacity of Cray System

February 13, 2019

South Africa has made headlines in recent years for its commitment to HPC leadership in Africa – and now, Cray has announced another major South African HPC expansion. Cray has been awarded contracts with Eclipse Holdings Ltd. to upgrade the supercomputing system operated by the South African Weather Service (SAWS). Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This