GPU-based Deep Learning Enhances Drug Discovery Says Startup

By John Russell

May 26, 2016

Sifting the avalanche of life sciences (LS) data for insight is an interesting and important challenge. Many approaches are used with varying success. Recently, improved hardware – primarily GPU-based – and better neural networking schemes are bringing deep learning to the fore. Two recent papers report the use of deep neural networks is superior to typical machine learning (support vector machine model) in sieving LS data for drug discovery and personalized medicine purposes.

The two papers, admittedly driven by a commercial interest (Insilico Medicine), are nevertheless more evidence of deep neural network (DNN) progress in LS research where large datasets with high dimensionality have long been difficult to handle. Using DNN to train models and produce answers is proving quite effective; in these two studies both straightforward and more complicated neural network techniques were used. Snapshot:

Part of what’s interesting here is the broad applicability of the DNN approach. As the authors (listed below) note there are many in silico approaches to drug discovery and disease classification, including efforts to use transcriptional response to predict functional properties of drugs. Neural networks’ natural knack for handling high dimensional data is an important capability in LS. Deep learning has already proven very valuable in a range of activities spanning simple image recognition to physics applications.

Broadly, neural networks try to emulate the way biological neural networks operate. Artificial neural networks are generally presented as systems of interconnected “neurons” which exchange messages between each other. The connections have numeric weights that can be tuned based on experience, making neural nets adaptive to inputs and capable of learning. In essence they can be trained to understand and solve classes of problems.

For example, a neural network for handwriting recognition might be defined by a set of input neurons that are activated by the pixels of an input image. After being weighted and transformed by a function (determined by the network’s designer), the activations of these neurons are then passed on to other neurons. This process is repeated until finally, the output neuron that determines which character was read is activated.

The first study cited here relied on a standard multilayer perceptron (MLP), which is a feed forward artificial neural network model that maps sets of input data onto a set of appropriate outputs. In this instance, researchers worked with data from three cell lines (A549, MCF-7 and PC-3 cell lines from the LINCS project) that were treated with various compounds to elicit gene expression transcriptional profiles. Researchers began by classifying the compounds into therapeutic categories with DNN based solely on the transcriptional profiles. “After that we independently used both gene expression level data for “landmark genes” and pathway activation scores to train DNN classifier.” In total, the study analyzed 26,420 drug perturbation samples. Shown below is a representation of the DNN used in the drug study.

Study design: Gene expression data from LINCS Project was linked to 12 MeSH therapeutic use categories. DNN was trained separately on gene expression level data for “landmark genes” and pathway activation scores for significantly perturbed samples, forming an input layers of 977 and 271 neural nodes, respectively.
Study design: Gene expression data from LINCS Project was linked to 12 MeSH therapeutic use categories. DNN was trained separately on gene expression level data for “landmark genes” and pathway activation scores for significantly perturbed samples, forming an input layers of 977 and 271 neural nodes, respectively.

The details of the study are fascinating. Use of all the criteria was key to accuracy and the DNN effectiveness in coping with high dimensionality was a critical enabler.

In the second study, a more complicated ensemble approach proved most effective. Notably, this wasn’t a gene expression data analysis; rather it was based on blood-based markers. Data from roughly 60,000 blood samples from a single laboratory were analyzed. The five most predictive markers – albumin, glucose, alkaline phosphatase, urea, and erythrocytes – were identified. The best performing DNN achieved 81.5 percent accuracy, while the entire ensemble had 83.5 percent accuracy. The paper suggests the ensemble approach is likely most effective for integration of multimodal data and tracking of integrated biomarkers for aging.

DevBox_3qrtrOpen_wMonitorBoth studies required substantial compute power including the parallel processing capability of GPUs. NVIDIA assisted by providing early access to its DIGITS DevBox, which is a roughly 30Tflop deep learning machine featuring 4 Titan X GPU. “We also used a 2X Tesla K80 GPU system,” said Alex Zhavoronkov, an author on both papers and CEO of Insilico Medicine. “The original DNN in the molecular pharmaceutics [work] was trained on a Datalytics GPU cluster in New Mexico,” said Alex Zhavoronkov, CEO of Insilico Medicine and an author on both papers.

It bears repeating that Insilico Medicine was the main driver behind both papers and has a business interest in bolstering its credentials; that said, deep learning is a relatively small community where collaborations between academic, commercial, and technology suppliers are considerable. (For a snapshot of trends at the leading edge see HPCwire article, Beyond von Neumann, Neuromorphic Computing Steadily Advances.)

Insilico, founded in the 2014 timeframe, chose to focus on deep learning and signaling pathway activation analysis, which is an effective way to reduce dimensionality in gene expression data. “We are essentially a drug discovery engine now,” said Zhavoronkov, who has long been familiar with GPU technology having worked for several years at ATI Technologies. He’s also an ex-pat from Russia who has maintained close ties there; Insilico Medicine has grown to a staff of 39 including 22 in Moscow. Eleven are focused exclusively on deep learning.

Zhavoronkov divides the current deep learning community into three segments: one that is using off-the-shelf systems and tools; a second that is pushing the boundary and developing their own tools; and elite third components primarily focused on neural network R&D and developing new paradigms, citing Google DeepMind as one of the latter. “We fall into the middle category but also with domain expertise in drug discovery. There are few companies that have both.”

Perhaps predictably bullish, he said, “Both papers are first in class and demonstrate that deep learning can be very powerful in both drug discovery and biomarker development. In a short time we got over 800 strong hypotheses for both efficacy and toxicity of multiple drugs in many diseases.”

[i] Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data, Molecular Pharamaceutics, published by the American Chemical Society, http://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.6b00248; the manuscript is now posted on the “Just Accepted” service of the ACS. Authors listed: Alexander Aliper, Sergey Plis, Artem Artemov, Alvaro Ulloa, Polina Mamoshina, Alex Zhavoronkov

[ii] Deep biomarkers of human aging: Application of deep neural networks to biomarker development, published in the May issue of Aging (Vol 8, No5), http://www.impactaging.com/papers/v8/n5/full/100968.html. Authors listed: Evgeny Putin, Polina Mamoshina, Alexander Aliper, Mikhail Korzinkin, Alexey Moskalev, Alexey Kolosov, Alexander Ostrovskiy, Charles Cantor, Jan Vijg, and Alex Zhavoronkov

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This