GPU-based Deep Learning Enhances Drug Discovery Says Startup

By John Russell

May 26, 2016

Sifting the avalanche of life sciences (LS) data for insight is an interesting and important challenge. Many approaches are used with varying success. Recently, improved hardware – primarily GPU-based – and better neural networking schemes are bringing deep learning to the fore. Two recent papers report the use of deep neural networks is superior to typical machine learning (support vector machine model) in sieving LS data for drug discovery and personalized medicine purposes.

The two papers, admittedly driven by a commercial interest (Insilico Medicine), are nevertheless more evidence of deep neural network (DNN) progress in LS research where large datasets with high dimensionality have long been difficult to handle. Using DNN to train models and produce answers is proving quite effective; in these two studies both straightforward and more complicated neural network techniques were used. Snapshot:

Part of what’s interesting here is the broad applicability of the DNN approach. As the authors (listed below) note there are many in silico approaches to drug discovery and disease classification, including efforts to use transcriptional response to predict functional properties of drugs. Neural networks’ natural knack for handling high dimensional data is an important capability in LS. Deep learning has already proven very valuable in a range of activities spanning simple image recognition to physics applications.

Broadly, neural networks try to emulate the way biological neural networks operate. Artificial neural networks are generally presented as systems of interconnected “neurons” which exchange messages between each other. The connections have numeric weights that can be tuned based on experience, making neural nets adaptive to inputs and capable of learning. In essence they can be trained to understand and solve classes of problems.

For example, a neural network for handwriting recognition might be defined by a set of input neurons that are activated by the pixels of an input image. After being weighted and transformed by a function (determined by the network’s designer), the activations of these neurons are then passed on to other neurons. This process is repeated until finally, the output neuron that determines which character was read is activated.

The first study cited here relied on a standard multilayer perceptron (MLP), which is a feed forward artificial neural network model that maps sets of input data onto a set of appropriate outputs. In this instance, researchers worked with data from three cell lines (A549, MCF-7 and PC-3 cell lines from the LINCS project) that were treated with various compounds to elicit gene expression transcriptional profiles. Researchers began by classifying the compounds into therapeutic categories with DNN based solely on the transcriptional profiles. “After that we independently used both gene expression level data for “landmark genes” and pathway activation scores to train DNN classifier.” In total, the study analyzed 26,420 drug perturbation samples. Shown below is a representation of the DNN used in the drug study.

Study design: Gene expression data from LINCS Project was linked to 12 MeSH therapeutic use categories. DNN was trained separately on gene expression level data for “landmark genes” and pathway activation scores for significantly perturbed samples, forming an input layers of 977 and 271 neural nodes, respectively.
Study design: Gene expression data from LINCS Project was linked to 12 MeSH therapeutic use categories. DNN was trained separately on gene expression level data for “landmark genes” and pathway activation scores for significantly perturbed samples, forming an input layers of 977 and 271 neural nodes, respectively.

The details of the study are fascinating. Use of all the criteria was key to accuracy and the DNN effectiveness in coping with high dimensionality was a critical enabler.

In the second study, a more complicated ensemble approach proved most effective. Notably, this wasn’t a gene expression data analysis; rather it was based on blood-based markers. Data from roughly 60,000 blood samples from a single laboratory were analyzed. The five most predictive markers – albumin, glucose, alkaline phosphatase, urea, and erythrocytes – were identified. The best performing DNN achieved 81.5 percent accuracy, while the entire ensemble had 83.5 percent accuracy. The paper suggests the ensemble approach is likely most effective for integration of multimodal data and tracking of integrated biomarkers for aging.

DevBox_3qrtrOpen_wMonitorBoth studies required substantial compute power including the parallel processing capability of GPUs. NVIDIA assisted by providing early access to its DIGITS DevBox, which is a roughly 30Tflop deep learning machine featuring 4 Titan X GPU. “We also used a 2X Tesla K80 GPU system,” said Alex Zhavoronkov, an author on both papers and CEO of Insilico Medicine. “The original DNN in the molecular pharmaceutics [work] was trained on a Datalytics GPU cluster in New Mexico,” said Alex Zhavoronkov, CEO of Insilico Medicine and an author on both papers.

It bears repeating that Insilico Medicine was the main driver behind both papers and has a business interest in bolstering its credentials; that said, deep learning is a relatively small community where collaborations between academic, commercial, and technology suppliers are considerable. (For a snapshot of trends at the leading edge see HPCwire article, Beyond von Neumann, Neuromorphic Computing Steadily Advances.)

Insilico, founded in the 2014 timeframe, chose to focus on deep learning and signaling pathway activation analysis, which is an effective way to reduce dimensionality in gene expression data. “We are essentially a drug discovery engine now,” said Zhavoronkov, who has long been familiar with GPU technology having worked for several years at ATI Technologies. He’s also an ex-pat from Russia who has maintained close ties there; Insilico Medicine has grown to a staff of 39 including 22 in Moscow. Eleven are focused exclusively on deep learning.

Zhavoronkov divides the current deep learning community into three segments: one that is using off-the-shelf systems and tools; a second that is pushing the boundary and developing their own tools; and elite third components primarily focused on neural network R&D and developing new paradigms, citing Google DeepMind as one of the latter. “We fall into the middle category but also with domain expertise in drug discovery. There are few companies that have both.”

Perhaps predictably bullish, he said, “Both papers are first in class and demonstrate that deep learning can be very powerful in both drug discovery and biomarker development. In a short time we got over 800 strong hypotheses for both efficacy and toxicity of multiple drugs in many diseases.”

[i] Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data, Molecular Pharamaceutics, published by the American Chemical Society, http://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.6b00248; the manuscript is now posted on the “Just Accepted” service of the ACS. Authors listed: Alexander Aliper, Sergey Plis, Artem Artemov, Alvaro Ulloa, Polina Mamoshina, Alex Zhavoronkov

[ii] Deep biomarkers of human aging: Application of deep neural networks to biomarker development, published in the May issue of Aging (Vol 8, No5), http://www.impactaging.com/papers/v8/n5/full/100968.html. Authors listed: Evgeny Putin, Polina Mamoshina, Alexander Aliper, Mikhail Korzinkin, Alexey Moskalev, Alexey Kolosov, Alexander Ostrovskiy, Charles Cantor, Jan Vijg, and Alex Zhavoronkov

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This