GPU-based Deep Learning Enhances Drug Discovery Says Startup

By John Russell

May 26, 2016

Sifting the avalanche of life sciences (LS) data for insight is an interesting and important challenge. Many approaches are used with varying success. Recently, improved hardware – primarily GPU-based – and better neural networking schemes are bringing deep learning to the fore. Two recent papers report the use of deep neural networks is superior to typical machine learning (support vector machine model) in sieving LS data for drug discovery and personalized medicine purposes.

The two papers, admittedly driven by a commercial interest (Insilico Medicine), are nevertheless more evidence of deep neural network (DNN) progress in LS research where large datasets with high dimensionality have long been difficult to handle. Using DNN to train models and produce answers is proving quite effective; in these two studies both straightforward and more complicated neural network techniques were used. Snapshot:

Part of what’s interesting here is the broad applicability of the DNN approach. As the authors (listed below) note there are many in silico approaches to drug discovery and disease classification, including efforts to use transcriptional response to predict functional properties of drugs. Neural networks’ natural knack for handling high dimensional data is an important capability in LS. Deep learning has already proven very valuable in a range of activities spanning simple image recognition to physics applications.

Broadly, neural networks try to emulate the way biological neural networks operate. Artificial neural networks are generally presented as systems of interconnected “neurons” which exchange messages between each other. The connections have numeric weights that can be tuned based on experience, making neural nets adaptive to inputs and capable of learning. In essence they can be trained to understand and solve classes of problems.

For example, a neural network for handwriting recognition might be defined by a set of input neurons that are activated by the pixels of an input image. After being weighted and transformed by a function (determined by the network’s designer), the activations of these neurons are then passed on to other neurons. This process is repeated until finally, the output neuron that determines which character was read is activated.

The first study cited here relied on a standard multilayer perceptron (MLP), which is a feed forward artificial neural network model that maps sets of input data onto a set of appropriate outputs. In this instance, researchers worked with data from three cell lines (A549, MCF-7 and PC-3 cell lines from the LINCS project) that were treated with various compounds to elicit gene expression transcriptional profiles. Researchers began by classifying the compounds into therapeutic categories with DNN based solely on the transcriptional profiles. “After that we independently used both gene expression level data for “landmark genes” and pathway activation scores to train DNN classifier.” In total, the study analyzed 26,420 drug perturbation samples. Shown below is a representation of the DNN used in the drug study.

Study design: Gene expression data from LINCS Project was linked to 12 MeSH therapeutic use categories. DNN was trained separately on gene expression level data for “landmark genes” and pathway activation scores for significantly perturbed samples, forming an input layers of 977 and 271 neural nodes, respectively.
Study design: Gene expression data from LINCS Project was linked to 12 MeSH therapeutic use categories. DNN was trained separately on gene expression level data for “landmark genes” and pathway activation scores for significantly perturbed samples, forming an input layers of 977 and 271 neural nodes, respectively.

The details of the study are fascinating. Use of all the criteria was key to accuracy and the DNN effectiveness in coping with high dimensionality was a critical enabler.

In the second study, a more complicated ensemble approach proved most effective. Notably, this wasn’t a gene expression data analysis; rather it was based on blood-based markers. Data from roughly 60,000 blood samples from a single laboratory were analyzed. The five most predictive markers – albumin, glucose, alkaline phosphatase, urea, and erythrocytes – were identified. The best performing DNN achieved 81.5 percent accuracy, while the entire ensemble had 83.5 percent accuracy. The paper suggests the ensemble approach is likely most effective for integration of multimodal data and tracking of integrated biomarkers for aging.

DevBox_3qrtrOpen_wMonitorBoth studies required substantial compute power including the parallel processing capability of GPUs. NVIDIA assisted by providing early access to its DIGITS DevBox, which is a roughly 30Tflop deep learning machine featuring 4 Titan X GPU. “We also used a 2X Tesla K80 GPU system,” said Alex Zhavoronkov, an author on both papers and CEO of Insilico Medicine. “The original DNN in the molecular pharmaceutics [work] was trained on a Datalytics GPU cluster in New Mexico,” said Alex Zhavoronkov, CEO of Insilico Medicine and an author on both papers.

It bears repeating that Insilico Medicine was the main driver behind both papers and has a business interest in bolstering its credentials; that said, deep learning is a relatively small community where collaborations between academic, commercial, and technology suppliers are considerable. (For a snapshot of trends at the leading edge see HPCwire article, Beyond von Neumann, Neuromorphic Computing Steadily Advances.)

Insilico, founded in the 2014 timeframe, chose to focus on deep learning and signaling pathway activation analysis, which is an effective way to reduce dimensionality in gene expression data. “We are essentially a drug discovery engine now,” said Zhavoronkov, who has long been familiar with GPU technology having worked for several years at ATI Technologies. He’s also an ex-pat from Russia who has maintained close ties there; Insilico Medicine has grown to a staff of 39 including 22 in Moscow. Eleven are focused exclusively on deep learning.

Zhavoronkov divides the current deep learning community into three segments: one that is using off-the-shelf systems and tools; a second that is pushing the boundary and developing their own tools; and elite third components primarily focused on neural network R&D and developing new paradigms, citing Google DeepMind as one of the latter. “We fall into the middle category but also with domain expertise in drug discovery. There are few companies that have both.”

Perhaps predictably bullish, he said, “Both papers are first in class and demonstrate that deep learning can be very powerful in both drug discovery and biomarker development. In a short time we got over 800 strong hypotheses for both efficacy and toxicity of multiple drugs in many diseases.”

[i] Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data, Molecular Pharamaceutics, published by the American Chemical Society, http://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.6b00248; the manuscript is now posted on the “Just Accepted” service of the ACS. Authors listed: Alexander Aliper, Sergey Plis, Artem Artemov, Alvaro Ulloa, Polina Mamoshina, Alex Zhavoronkov

[ii] Deep biomarkers of human aging: Application of deep neural networks to biomarker development, published in the May issue of Aging (Vol 8, No5), http://www.impactaging.com/papers/v8/n5/full/100968.html. Authors listed: Evgeny Putin, Polina Mamoshina, Alexander Aliper, Mikhail Korzinkin, Alexey Moskalev, Alexey Kolosov, Alexander Ostrovskiy, Charles Cantor, Jan Vijg, and Alex Zhavoronkov

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Swiss Supercomputer Enables Ultra-Precise Climate Simulations

September 17, 2020

As smoke from the record-breaking West Coast wildfires pours across the globe and tropical storms continue to form at unprecedented rates, the state of the global climate is once again looming in the public eye. Owing to Read more…

By Oliver Peckham

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk management, and high-frequency trading, as told by a group of l Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

Legacy HPC System Seeds Supercomputing Excellence at UT Dallas

September 16, 2020

What happens to supercomputers after their productive life at an academic research center ends? The question often arises when people hear that the average age of a top supercomputer at retirement is about five years. Rest assured — systems aren’t simply scrapped. Instead, they’re donated to organizations and institutions that can make... Read more…

By Aaron Dubrow

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

HPC Strategist Dave Turek Joins DNA Storage (and Computing) Company Catalog

September 11, 2020

You've heard the saying "flash is the new disk and disk is the new tape," which traces its origins back to Jim Gray*. But what if DNA-based data storage could o Read more…

By Tiffany Trader

Google’s Quantum Chemistry Simulation Suggests Promising Path Forward

September 9, 2020

A much-anticipated prize in quantum computing is the ability to more accurately model chemical bonding behavior. Doing so should lead to better chemical synthes Read more…

By John Russell

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This