Cavium Unveils ThunderX2 Plans, Reports ARM Traction is Growing

By John Russell

May 31, 2016

Cavium yesterday rolled out plans for ThunderX2, the next generation of its ThunderX line of ARM system-on-a-chip (SOC) processors. Given all of the recent noise around Intel’s Broadwell and Knights Landing chips, the announcement is a reminder that the ARM camp continues to make what it believes is steady progress into the x86-dominated landscape. Cavium made the announcement at Computex being held this week in Taipei.

Besides detailing plans for the new chip – based on the latest ARMv8-A architecture, built on a 14nm FinFET process, featuring up to 54 cores and significantly expanded memory and IO capability – Cavium took pains to review ecosystem growth and market traction around the original ThunderX offering. One reason for this is the relative reluctance of OEM and ODM to talk publically about their ARM efforts.

“No one wants to annoy the 800-pound gorilla. Neither do we,” said Gopal Hegde, VP/GM, Data Center Processor Group, Cavium. He is referring, of course, to Intel which dominates the server landscape with its x86 lineup.

Nevertheless, the burgeoning capabilities of the ThunderX line and potential cost savings will pit Cavium – the rest of the ARM camp – against Intel in many use cases situations. HPC is one of Cavium’s targets and it says CFD codes, for example, will run better on ThunderX2. While the announcement was more ostensibly aimed at the enterprise datacenter and cloud, the HPC ambitions were also clear – the new beefier core could find a home in many HPC workflows.

Availability of ThunderX2 is still far off, scheduled for Q1 or Q2 2017. That said, the new SOC is a significant upgrade that will provide 2x-3x performance improvement over ThunderX and enhanced power management features, according to Cavium. A snapshot of TunderX2’s major features is shown on the slide here. Among the many additions are full support for out of order execution (OOO) per socket and doubling of cache size (see slide below).

ThunderX2 Feature

 

Generally speaking, Cavium chips aren’t intended to compete with Intel’s latest and greatest, emphasized Hegde. Cavium rounded up statements of support from many key constituents in the ARM community to accompany the announcement. Two examples:

  • ARM Ltd. “The Cavium ThunderX2 will expand the market opportunity for ARM-based server technologies by addressing demanding application and workload requirements for compute, storage networking and security. ThunderX2 demonstrates Cavium’s ability to deliver a combination of innovation and engineering execution and the new product family increases the momentum for server deployments powered by ARM processors in large scale data centers and end user environments,” said Simon Segars, CEO, ARM
  • Gigabyte (mother boards). “Gigabyte has developed and is already shipping a range of Cavium ThunderX based server products to customers in US, Europe and Asia. We are seeing strong demand for these ARM-based platforms – especially from cloud service providers. The ThunderX2 represents a leap ahead in terms of overall performance and connectivity,” said Alex Liu, Head of Product Marketing, GIGABYTE.

Other testimonials were provided, notably from by AMI, Cannonical (ubuntu), E4, FreeBSD, Linaro, Red Hat, and Suse. No doubt this is just typical marketing practice but given the number, it has the feel of a deliberate show of strength for ARM in the server space. Full comments from all are available in the release.

“We think the ecosystem is already well developed,” said Hegde. Indeed, most of the needed pieces are in place and with the availability of silicon from a growing number of sources, not just Cavium, it will be interesting to see how the market develops.

ThunderX Market Traction

 

Many prominent OEMs, says Hegde, are flying under the radar in terms of working with ARM but are nevertheless working with customers on ARM projects. He cites, for example, Cray as one with an ARM development platform it provided to customers. Steady improvement in 64-bit ARM offerings, he says, are changing attitudes, a point echoed by Simon Segars, CEO, ARM.

“The Cavium ThunderX2 will expand the market opportunity for ARM-based server technologies by addressing demanding application and workload requirements for compute, storage networking and security,” said Segars. “ThunderX2 demonstrates Cavium’s ability to deliver a combination of innovation and engineering execution and the new product family increases the momentum for server deployments powered by ARM processors in large scale data centers and end user environments.”

Cavium is taking advantage of the shrinking feature (from 28 nm to 14 nm) to improve power consumption and power management capabilities which it says will yield a 30 percent power savings compared to the first generation ThunderX. One new element is support for dynamic voltage frequency scaling (DVFS) and increased granularity in other power management controls.

The plan now is to offer TunderX2 in four distinct flavors:

  • Compute (ThunderX2_CP): Optimized for cloud compute workloads such as private and public clouds, web serving, web caching, web search, commercial HPC workloads such as computational fluid dynamics (CFD) and reservoir modeling. This family supports multiple 10/25/40/50/100 GbE network Interfaces and PCIe Gen3 interfaces. It also includes accelerators for virtualization and vSwitch offload.
  • Storage (ThunderX2_ST): Optimized for big data, cloud storage, massively parallel processing (MPP) databases and data warehousing workloads. This family supports multiple 10/25/40/50/100 GbE network interfaces, PCIe Gen3 interfaces and SATAv3 interfaces. It also includes hardware accelerators for data protection/ integrity/security, user to user efficient data movement.
  • Security (ThunderX2_SC): Optimized for secure web front-end, security appliances and cloud RAN type workloads. This family supports multiple 10/25/40/50/100 GbE interfaces and PCIe Gen3 interfaces. Integrated hardware accelerators include Cavium’s industry leading, 5th generation NITROX security technology with acceleration for IPSec, RSA and SSL.
  • Networking (ThunderX2_NT): Optimized for media servers, scale-out embedded applications and NFV type workloads. This family supports multiple 10/25/40/50/100 GbE interfaces. It also includes OCTEON style hardware accelerators for packet parsing, shaping, lookup, QoS and forwarding.

As noted, Cavium tends to avoid head-to-head comparisons with the top-of-the-line Intel products, in part because it is targeting more cost-sensitive enterprise application stretching from pretty standard workflows up into more HPC domains. Shown here is a comparison provided by Cavium against Intel’s E5-2690v3 for cloud workloads.

ThunderX.Intel.comparison

Cavium’s full announcement is available here: http://www.cavium.com/newsevents-Cavium-Announces-ThunderX2.html

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: SC20 Edition

November 30, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

GENCI Supercomputer Simulation Illuminates the Dark Universe

November 30, 2020

What we can see and touch are, in the scheme of the universe, relatively minor components, with visible matter and tangible mass constituting just 16 percent of the universe’s mass and 30 percent of its energy, respect Read more…

By Oliver Peckham

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about how AI can benefit their business operations and products. Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

AWS Solution Channel

Add storage to your high-performance file system with a single click and meet your scalability needs

Many organizations have on-premises, high-performance workloads burdened with complex management and scalability challenges. Scaling data-intensive workloads on-premises typically involves purchasing more hardware, which can slow time to production and require high upfront investment. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman Institute for Advanced Science and Technology at the Universi Read more…

By Oliver Peckham

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 20, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

SC20 Keynote: Climate, Exascale & the Ultimate Answer

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. In his keynote, Stevens traced the history of climate science from its earliest days through... Read more…

By Oliver Peckham

EuroHPC Exec. Dir. Talks Procurement, EPI, and Europe’s Efforts to Control its HPC Destiny

November 19, 2020

While much of the HPC community’s attention is fixed on SC20’s flood of news and new product announcements, Anders Dam Jensen, the newly-minted executive di Read more…

By Steve Conway

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This