TACC Director Lays Out Details of 2nd-Gen Stampede System

By Tiffany Trader

June 2, 2016

With a $30 million award from the National Science Foundation announced today, the Texas Advanced Computing Center (TACC) at The University of Texas at Austin (UT Austin) will stand up a second-generation Stampede system based on Dell PowerEdge servers equipped with Intel “Knights Landing” processors, next-generation Xeon chips and future 3D XPoint memory. Announced today at TACC’s 15th anniversary event, Stampede 2 will deliver an estimated peak performance of 18 petaflops, doubling the compute power of the current flagship system. The award from the National Science Foundation (NSF) continues the leadership-class supercomputing technology and expertise established by the first Stampede system, which was funded by NSF 2011.

As with the first Stampede system, Stampede 2 will be deployed with vendor partners Dell and Intel. Seagate Technology joins the collaboration and will be providing a Lustre storage system that offers roughly twice the storage capability of the current Stampede machine. A cyberinfrastructure team from TACC, UT Austin, Clemson University, Cornell University, the University of Colorado at Boulder, Indiana University, and Ohio State University will handle operations for the supercomputer, which, like its predecessor, will be part of the XSEDE network, providing a vital resource to thousands of researchers across the US.

HPCwire reached out to Dan Stanzione, executive director of the Texas Advanced Computing Center, for additional details and context.

HPCwire: Can you recap what the selection process was like – was it an open bid?

Dan Stanzione: Not precisely. We talked to a number of vendors so this was another NSF proposal. The original Stampede award had an option for renewal – so based on our second or third year annual review, they invited us to submit a renewal proposal. We worked with various vendors and decided to stick with our original team of Intel and Dell and we did add Seagate to do storage as a new partner. We proposed that and it’s gone through over the last year, culminating with the NSF officially making the award yesterday.

HPCwire: Do you need to do any facilities upgrades?

Stanzione: That’s the nice thing about this award. Unlike Ranger and Stampede the first time this machine will start out being built adjacent to Stampede and then we will slowly replace the existing Stampede. It’s obviously a lot faster system but the physical node count is about the same because it’s the same amount of money that’s coming into it. The Knights Corner accelerator cards, the coprocessors in the original Stampede, were fairly big and bulky nodes. This new system footprint-wise is actually going to be a little bit smaller and take a little less power than the current Stampede, so it will fit into our current datacenter. This means for the first time over the span of our last three very large machines, we don’t have to do facilities and that’s a wonderful thing.

HPCwire: How would you characterize the value equation of this refresh with respect to performance, footprint, system costs, and power costs compared to previous generations?

Stanzione: If you look at the steps, we’re about four years apart in our big systems, almost five by the time everything gets done. From Ranger to Stampede, we went up by a factor of four in that time period [2008-2013], but then we added the coprocessor cards and that changed the physical footprint, the power and it changed the peak performance.

There are two ways to look at it. The base Stampede system was about 2 petaflops, but with the coprocessors, it was about 9.5 petaflops – so in some ways just a couple times faster, and in some ways a lot faster. The [Knights Corner] coprocessors were always sort of an interim step in the way that things were packaged so now we’ll have the Knights Landing Xeon Phi nodes in the new system as the primary processor in the node – so in some ways this machine would be twice as fast as Stampede if you count all the coprocessors and other things we did to boost performance. If you just look at the base system, it’s about nine times faster than the old base system in that time line of 2013 to 2017.

We expected just because we knew that the coprocessors were basically an interim stem, that the physical footprint would change a lot and that we should keep getting these power efficiencies. We were getting more and more nodes and spending more and more money, but once the budget levels off — this system is roughly the same node count as Stampede. Stampede was a few more nodes than Ranger but we went from four socket nodes to two socket nodes, so the price per socket has been fairly constant for a long time.

HPCwire: What is the timeline for getting Stampede 2 installed, deployed and upgraded?

Stanzione: We are going to do it in several phases. We actually have a preliminary system that we’re doing right now that we’ll have by ISC that is actually the last milestone of the original Stampede project. We’re rolling out 500 second-generation Xeon Phi “Knights Landing” nodes that we’re bringing up right now. We’ll have those available right after ISC and build some experience on those on the end of the original Stampede project and use those to get ready for the new big system. We haven’t quite nailed down the timelines yet, but some of the system will be Knights Landing based and that we’ll be doing in the first half of 2017 – the first big phase – and then we’ll do some next-generation Xeon processor nodes in a second phase that will probably be the latter half of 2017, and then we’ll add some of the 3D XPoint nonvolatile memory and that will probably spill into 2018.

HPCwire: How will you handle the 500 KNLs as you switch over?

Stanzione: Those are running in a spare row. We built out a little more space in the datacenter for them – they will be part of the existing Stampede system but with a separate queue with separate build nodes that you log into, but we’re going to share the existing Stampede file systems and user accounts. Everybody that can run on the current Stampede, once these move into full production will have full access to them by logging into Stampede and jumping over to the Knights Landing queue. They’ll get integrated into the new system when the time comes.

HPCwire: Do you have specific info on number of nodes, cores, etc.?

Stanzione: We’re anticipating that the whole system when done will come in around 18 petaflops. We have some various performance targets we’re chasing and we want to build some experience before we set the exact breakdown between the kinds of nodes that we’ll have in there – so at this time I don’t have precise node counts or core counts to give you. We don’t have exact performance yet the future Xeon processors and even the Knights Landing core counts aren’t official yet.

HPCwire: What version of OmniPath will this system use?

Stanzione: Given the timeframe of taking deliveries later this year into early next year, the first generation OmniPath, and it made more sense to do the whole thing in a single fabric.

HPCwire: Are there specs available for the Seagate Lustre file system?

Stanzione: Not at the moment but it will be at least twice as big as the current Stampede file system. We tried to go at least double in every dimension, but in network bandwidth, file system, memory capacity, etc.

HPCwire: I think this is the first system announcement for 3D-XPoint.

Stanzione: I hadn’t thought of that but hopefully we’ll be first to market with that. The 3D-XPoint is coming in several form factors, starting with PCI drives – those are coming earlier, but these are the DIMMs, the in-memory socket 3D-XPoint. It might be actually be announced in one of the big DOE systems that’s also in the 2018 timeframe.

I will say the way we phased it and because the racks are denser and because we have a little extra space – even with those multiple phases – we’ll keep running parts of the old machine as the new phases come up – so we will always have a Stampede system running throughout the transition. Until we hit that second major phase of the future Xeon processors, we’ll still have some of the original system running – so even though it’s going to be in the same part of the datacenter, we won’t have any break in service from the users’ perspective.

HPCwire: So you’re employing memory hierarchies?

Stanzione: To some degree. The Knights Landing nodes do have the MCDRAM [Multi-Channel DRAM] in them – so the memory hierarchy gets deeper to that extent. Eventually, a subset of the nodes will have the non-volatile memory, the 3D XPoint. At that point, we’ll have cache, level one, level two, level three cache, MCDRAM, main memory and then some nodes will have the non-volatile memory as well, so we’ll have a pretty deep hierarchy. We’re just doing this sort of experiment in the 3D-XPoint non-volatile memory now – it’s not going to be the whole system – just to figure out how people would use that deep a memory hierarchy. We expect some layers to get pruned away as the years go on in terms of how people use memory. I know some future Knights Landing systems that have been announced will just use MCDRAM and not use regular DDR4 DRAM in them. For the very broad mix of applications that we have, we weren’t ready to make that decision yet. So we’re still keeping some main memory in all the nodes as well. We’ll have a very deep memory hierarchy and it will be very interesting to see how people use that.

HPCwire: How would you characterize Stampede in relation to your other systems?

Stanzione: Stampede is our flagship supercomputing system. Stampede 2 will be too. Stampede is still in top 10 even though it’s three-and-a-half years old – which is fairly remarkable all by itself. For over three years, it has stayed in the top 10 of the TOP500. It is our NSF XSEDE system so we support open science users for any funded university partner and it’s had remarkably broad usage. We’ve had more than 2,500 different projects on Stampede, more than 10,000 users who use it directly, and we’ve put out about 3 billion core hours on the machine to users. Those 2,500 projects are probably in 100 different fields of science and research so it’s been an enormously broad and general purpose machine and we’ve always maintained things like the large memory system and the visualization system so we can support the range of things that people want to do – and we think Stampede 2 will be the same. It’s also our NSF flagship system here, competing to be one of the top systems in the world and open to many thousands of users. We expect all of those thousands of projects that run on Stampede will roll over to Stampede 2.

HPCwire: You probably saw that Omar Ghattas, a computational geoscientist/engineer at UT Austin and recent winner of the Gordon Bell prize for the most outstanding achievement in HPC was quoted in the official system announcement from NSF saying, “Stampede has […] given us a window into a future in which simulation is but an inner iteration of a ‘what-if?’ outer loop. Stampede 2’s massive performance increase will make routine the principled exploration of parameter space entailed in this outer loop.”

Could you provide some real-world context for this quote?

Stanzione: In general terms, it’s about the relationship between computing and what has become known as big data problems. Traditionally people think of big data as acquired from an instrument or a trace of the Internet, but we produce an awful lot of data in simulation too. We’ve moved from the world – and I would say that the weather and climate people have led the way – where a single simulation is the output to where you’re doing an ensemble of simulations and looking at thousands of possibilities and doing big data techniques on that. You then data mine the results of what are a thousand possible paths for this hurricane; add that to a database of a thousand simulations of past storms and the actual storm tracks and then bring this data mining and machine learning to the data we produce in simulation. So instead of thinking about what can we do in one simulation, it’s thinking about what if we could do an unlimited number of simulations and how does that chance how we approach science and it becomes like any other big data problem, in that you start needing machine learning to parse all that data and derive useful insights from it.

HPCwire: And these workflows leverage TACC’s other viz and data-oriented systems?

Stanzione: Stampede is our most general-purpose system I would say, but we certainly have lot of specialized use cases, like Wrangler for our more data-intensive users and Maverick is our GPU intensive platform for really doing interactive visualization and interacting with data – and we see all those use cases in the workload. In fact Stampede 2 like Stampede will connect to our stockyard shared storage infrastructure so you can generate your massive amount of simulation output on Stampede and analyze it on Wrangler or visualization it on Maverick and share between the different platforms that way.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This