HPC Leadership Computing Trusts DDN

By Rob Farber

June 13, 2016

As we approach an Exascale future, the focus is on how to provision and use that computational capability. In order to realize the full societal impact of Exascale computing, storage systems to support Exascale supercomputers are equally important else those valuable (and expensive) compute cycles will be wasted during IO operations. Thought leadership in the HPC community agrees that increasing core count is clearly the direction for computation (although there are strong differences of opinion on how those increased core counts are to be implemented). However, the storage picture is more complicated.

Unlike computation or in memory systems, data retained in storage is persistent over a period of years and even decades. Further, storage systems cannot ever risk losing or delivering bad data at any point in the data lifecycle.  This requires deep technical capabilities and experience in large scale computing and data management.  As we look to the future, past performance truly is a predictor of future success in the storage market, which is why more than 2/3 of the world’s fastest computers rely on DDN (Data Direct Networks) for their storage needs. From pre-Petascale supercomputers to the current generation of double-digit PF/s (petaflop per second) machines, DDN has preferentially been selected to partner with end users and technology integrators to expand the limits of HPC computing. Looking to an Exascale world, DDN is investing 10’s of millions of dollars and opening new research and development facilities to create the end-to-end storage technologies that will meet the data requirements of current users and future Exascale supercomputers. DDN storage simply works, is fast, expandable, power efficient, and cost effective, which is why DDN is the storage vendor of choice for HPC professionals and those tasked with advancing the state-of-the-art in leadership class supercomputing.

The recent announcement of the Japanese Oakforest-PACS 25 PF/s supercomputer is the latest double-digit Petascale machine that will utilize a combination of DDN burst buffer, application acceleration, SSD and file system technologies together to achieve results faster than conceived possible even just 2 years ago.  The Oakforest storage system is comprised of 25 DDN IME14KX caching appliances to provide 1.4 TB/s of low-latency flash-based cache. These cache devices will work in conjunction with DDN supplied storage to deliver 400 GB/s of peak Lustre bandwidth to meet the storage bandwidth needs of this latest generation multi-PF/s supercomputer. As can be seen in the figure below, Lustre is just one option as tiered DDN storage works with any parallel file-system.

Figure 1: DDN devices work with any parallel file-system
Figure 1: DDN devices work with any parallel file-system

Infinite Memory Engine

DDN’s IME (Infinite Memory Engine) represents a new IO tier for HPC that treats small IO in precisely the same manner as large sequential IO. This is a revolutionary change from existing parallel filesystems results in near wire-speed performance regardless of random IO patterns, IO size, and shared file access. DDN’s IME product line also has the ability to work with future storage media such as 3D XPoint and others.

Figure 2: Rack performance IME (Image courtesy Cray Users Group)
Figure 2: Rack performance IME (Image courtesy Cray Users Group)

IME “burst-buffers”

The DDN IME intelligently decouples storage performance from the traditional view of ‘storage’ to greatly accelerate HPC workloads – especially for frequently performed checkpoint/restart operations.

As can be seen in the figure below, Burst Bandwidth has traditionally required overprovisioning of storage to meet peak bandwidth needs. Checkpoint/restart operations are an example of a common IO operation that requires storage overprovisioning to quickly move the data and prevent wasting valuable compute cycles. The DDN IME caches can be configured to act as burst buffers that can quickly handle bursts of extremely high IO activity. This is the reason why the Oakforest-PACS supercomputer has been provisioned with 1.4 TB/s of DDN IME bandwidth.

Figure 3: Bursty IO patterns require overprovising
Figure 3: Bursty IO patterns require overprovising

IME positions HPC for the Exascale

Looking ahead to the Exascale, DDN IME caches can save significant capital and operational dollars by reducing the number of devices required to achieve Exascale-capable levels of storage performance. To put this in perspective, Gary Grider famously pointed out in his 2009 presentation, Preparing Applications for Next Generation IO/Storage that plotting Exascale storage costs of millions of dollars in log scale means you have hit the big time!

Figure 4: 2009 projected costs of storage for an Exascale system (image courtesy HPC User Forum)
Figure 4: 2009 projected costs of storage for an Exascale system (image courtesy HPC User Forum)

In contrast, the Oakforest-PACS procurement only required 25 DDN IME14KX caching appliances. As the industry leader, DDN has dramatically redefined the storage landscape and costs associated with Exascale storage systems since 2009 as shown in the graphic below.

Figure 5: DDN has redefined the storage landscape since 2009
Figure 5: DDN has redefined the storage landscape since 2009

For HPC, DDN IME devices makes high-performance clusters, multi-PF/s systems, and Exascale computation both possible and affordable.

Figure 6: A DDN IME14k (click to see more)
Figure 6: A DDN IME14k (click to see more)

The many uses of IME

Of course, IME storage works great for databases, out-of-core solvers, and a variety of other scientific and commercial HPC workloads.

Figure 7: Additional uses of a DDN IME product
Figure 7: Additional uses of a DDN IME product
  1. A Write Accelerating Burst Buffer absorbing the bulk application data into the IME14K NVMe solid state cache significantly faster than the file system can absorb it.
  2. A File System Accelerator and Application Optimizer as IME reorders application I/O to optimize flushing the cache to long term storage (enabling purchasing as little expensive cache possible).
Figure 8: Dataflow in the client
Figure 8: Dataflow in the client
  1. A Read-optimized Application-I/O Accelerator that enables out-of-band API configuration of the IME appliance to optimize both reads and writes, allowing more simultaneous job runs, shortening the job queue and enabling significantly faster application run time to the user. The API integrates IME with the job schedulers and pre-stages / warms the cache for new jobs, accelerating first read.

Standard script operations make utilization of DDN IME appliance capabilities straight-forward. The following shows how to use the DDN IME as an application accelerator.

Figure 9: IME acts as an application IO accelerator
Figure 9: IME acts as an application IO accelerator

Robustness and Scalability are key!

Cost and power savings are for naught if the storage solution is not robust and scalable as well.

DDN gives the customer the option of using a technique called erasure coding to protect against storage failures. Erasure codes are primarily used in scale-out object storage systems where erasure encoded data blocks are distributed across multiple storage nodes to provide protection against both media and node failures. Erasure encoding can literally save racks of storage nodes when compared to the alternative, three- or four-way mirroring/replication [For more information click here].

Option 1: Data protection is optional. The IME server and associated storage media are considered “just cache” where the data can be recreated if lost.

Option 2: Erasure coding is calculated at the client:

  • Exhibits excellent scaling and can run with high client counts.
  • Servers don’t get clogged up.
  • There is a tradeoff as erasure coding does reduce usable client bandwidth and IME capacity according to IME count by roughly 11% (in an 8+1 configuration) to 25% (in a 3+1 configuration).
Figure 10: Erasure encoding distributed across multiple IMEs
Figure 10: Erasure encoding distributed across multiple IMEs

Managing the full spectrum of end-to-end data lifecycle management

Robust, scalable, and performant storage are but part of the HPC storage picture as data archive must also be considered as well as full life cycle data management and distributed cloud based storage. Similarly, questions are being raised about the efficacy of POSIX based file-systems in future HPC systems. For this reason, object storage systems are undergoing rapid development.

To address current and future end-user storage needs – even at the Exascale – DDN has created a complete portfolio of end-to-end storage products that work together as an extremely flexible data lifecycle management toolset. DDN claims these tools that can be applied anywhere and at any scale.

Figure 11: DDN end-to-end big data lifecycle management
Figure 11: DDN end-to-end big data lifecycle management

Briefly, the DDN storage portfolio covers:

  • Fast data and compute: Addressed through the DDN family of IME products.
  • File-system appliances: DDN products include the GRIDScaler® and EXAScaler®.
  • Persistent data: Persistent data for a variety of commercial and big data workloads are addressed via the SFA14k™ storage array products.
  • Object and cloud storage: The WOS® Object storage for private and hybrid clouds take DDN customers beyond traditional file-systems. WOS is described in the DDN white paper, WOS® 360° full spectrum object storage.
Figure 12: WOS object storage
Figure 12: WOS object storage

For more information

For more information, visit http://www.ddn.com.


Rob Farber is a global technology consultant and author with an extensive background in HPC and storage technologies that he applies at national labs and commercial organizations. He can be reached at [email protected]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More

February 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or at least, pull off the cloud HPC equivalent. As part of thei Read more…

By Oliver Peckham

ORNL Team Develops AI-based Cancer Text Mining Tool on Summit

February 13, 2020

A group of Oak Ridge National Laboratory researchers working on the Summit supercomputer has developed a new neural network tool for fast extraction of information from cancer pathology reports to speed research and clin Read more…

By John Russell

Nature Serves up Another Challenge to Quantum Computing?

February 13, 2020

Just when you thought it was safe to assume quantum computing – though distant – would eventually succumb to clever technology, another potentially confounding factor pops up. It’s the Heisenberg Limit (HL), close Read more…

By John Russell

Researchers Enlist Three Supercomputers to Apply Deep Learning to Extreme Weather

February 12, 2020

When it comes to extreme weather, an errant forecast can have serious effects. While advance warning can give people time to prepare for the weather as it did with the polar vortex last year, the absence of accurate adva Read more…

By Oliver Peckham

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops peak, HPC5 should easily crack the top ten fold of the next T Read more…

By Tiffany Trader

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Intel Stopping Nervana Development to Focus on Habana AI Chips

February 3, 2020

Just two months after acquiring Israeli AI chip start-up Habana Labs for $2 billion, Intel is stopping development of its existing Nervana neural network proces Read more…

By John Russell

Lise Supercomputer, Part of HLRN-IV, Begins Operations

January 29, 2020

The second phase of the build-out of HLRN-IV – the planned 16 peak-petaflops supercomputer serving the North-German Supercomputing Alliance (HLRN) – is unde Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This