OpenACC Adds Support for OpenPOWER; Touts Growing Traction

By John Russell

June 13, 2016

In a show of strength leading up to ISC the OpenACC standards group today announced its first OpenPOWER implementation, the addition of three new members – University of Illinois, Brookhaven National Laboratory, and Stony Brook University – and details of its expanding 2016 training schedule. Michael Wolfe, technical director of OpenACC, also talked with HPCwire about thorny compiler challenges still remaining as the number of processor (all types) cores grows and memory management issues become more complex.

Currently in private beta testing and planned for public beta in August, the PGI OpenACC compiler supporting OpenPOWER has made steady progress according to Wolfe, who is also a compiler engineer with PGI (NVIDIA). “It includes the same command line. You can take an application, you copy all the sources, all the make files over, just type make, and it builds on the new system,” said Wolfe.

OpenACC (Open Accelerators) is the directives-based programming standard for parallel computing developed by Cray, Nvidia and PGI. The standard is designed to simplify parallel programming of heterogeneous CPU/GPU systems. As in OpenMP, the programmer can annotate C, C++ and Fortran source code to identify the areas that should be accelerated using compiler directives and additional functions. Like OpenMP 4.0 and newer, code can be started on both the CPU and GPU.[i]

The forthcoming version of PGI OpenACC compiler with OpenPOWER will feature:

  • Feature parity with PGI Compilers on Linux/x86+Tesla
  • CUDA Fortran, OpenACC, OpenMP, CUDA C/C++ host compiler
  • Integrated with IBM’s optimized LLVM OpenPOWER code generator
  • Write Once, Compile and Run Anywhere

“They way we have implemented this is to use PGI front end and PGI optimizer, and tie it into an LLVM back end code generator. We had support from IBM which has done a lot of work on LLVM and on the code generator and libraries. We were able to leverage a lot of that work,” said Wolfe

The current generation of IBM POWER chip is POWER8+, and Big Blue has said POWER9 processors will likely be ready sometime in 2017. Wolfe isn’t expecting major compatibility issues for the OpenACC compiler.

“Micro-architecturally I’m sure there will be difference in gates and layout and logic design, but from in instruction set perspective I don’t know how much difference [well see]. Typically it’s just additions, new instructions for behavior. Intel does things like double the length of the SIMD (single instruction, multiple data) register. I don’t know if IBM has plans for that.

“There will be versions of POWER8 with the CAPI interface and we’ll be able to work with NVLINK and I think that will be in all the POWER9s. Will it be compatible and will it be optimized for it is the other questions. The thing that we would hope is for the most part that the LLVM code generator will have the low level optimizing for that,” Wolfe said.

OpenACC.OpenPOWER Support

The additions of the University of Illinois, Brookhaven, and Stony Brook demonstrate the growing traction of OpenACC said Duncan Poole, director of strategic alliance for the accelerated computing group at NVIDIA and OpenACC president. He noted the value of OpenACC’s various training events (hackathons, workshops, etc) as an important force in attracting new members and sometimes presenting opportunities for computer scientists to publish their work.

“A hackathon that ran at the NCSA (National Center for Supercomputer Applications) brought the University of Illinois into to the fold. Brookhaven participated in a separate hackathon – it’s known for expertise in QCD (quantum chromodynamics) and has a particular library, Grid QCD, which is C++ code. C++ tends to stress the directives model of compilers so having them involved, providing feedback to us as to how we should change the standard and working with them to help migrate their code to OpenACC was important. They see the value and we see the value,” said Poole.

“UIUC joined OpenACC to support two key grants and projects from the NSF/NCSA and DOE that involve scientific research using complex, un-optimized code,” said John Larson, research scientist at the University of Illinois, Urbana-Champaign. “Being a member of the OpenACC standard organization will give both projects early access to technical features of the developing OpenACC language and also enable input that may influence new OpenACC language features.”

OpenACC has held five events in the last 14 months. Three more OpenACC hackathons are planned for the second half of 2016 at the Swiss Supercomputing Center (CSCS), CSC in Helsinki, Finland and the Oak Ridge National Lab. Hackathons are intensive five day hands-on coding sessions intended to help scientists parallelize their applications to run on accelerators and multi- core processors.

In the hackathons, teams (2-6 persons) are paired with experts from OpenACC community. “Very significantly that includes a compiler engineer. The immediate benefit from this is when you run into problems, the [first] thing that the developer asks is, “is it my code that caused the problem or something else.” Early on there were lots of bugs in the compiler but more recently, that hasn’t been the issue, it’s been more understanding the steps you take parallelize code,” said Poole

The first two steps, which Poole said they prefer teams have done before the hackathon, are to settle on their particular compiler of choice and to profile the code to identify where the opportunities for speed-up are. “But it’s not always the case. You basically go through the act of inserting directives to make your code parallel and the next step would be to insert the data directives that help describe data movement between host and the accelerator.”

The events are not designed to “ram OpenACC down everybody’s throat. Even in the hackathon it’s much more a use whatever tool is most appropriate to move your code forward. So it could be math libraries, it could be CUDA, OpenACC, OpenCL, whatever makes sense to the developer,” said Poole.

Poole agrees the term workshop is often used broadly. OpenACC has a fairly specific view of its events: training courses (~two days); workshops (~three days); hackathons (~four days); and academic workshops (~5 days). They vary in scale and duration (see list of upcoming events below).

Academic workshops are the most rigorous. “We do two of these a year right now. The one at ISC this year – (International Workshop on Performance Portable Programming Models for Accelerators (P3MA) with keynoter Simon Hammond of Sandia) – is an academic event: you submit your proposal for the paper you want to have published; it’s peer reviewed by other academics; the top one are selected and presented at the workshop. It’s a proper opportunity to publish for computer scientists,” said Poole

OpenACC Hackathons

Given the rapid change in the accelerator and processor landscape Poole and Wolfe agree significant challenges remain in efforts to parallelize code and enhance performance and portability. Wolf noted three ongoing issues.

General cleanup is one. “To be frank, the people who wrote the spec, and I mean me and others, don’t really write specifications for a living. We write what we think is correct but sometimes you are not quite as precise as you need be. Sometimes it’s an error but sometimes it’s an assumption that the person reading doesn’t have assumption in mind. So there’s some things in here about the way things are specified – one would be the reduction clause and whether it’s a data clause or not. In OpenACC, it’s not with the data clauses but it has some of the behavior of a data clauses so there’s some clean up that we need to make sure we have things specified properly,” he said.

Multiple device support is the second and one of the bigger headaches, said Wolfe. “Mateo Swiss, for example, bought a system where every node has got a dual socket Haswell (Intel) and eight K80s (see HPCwire article, Europe’s Fastest Supercomputer to get Pascal GPU Upgrade). How do you take advantage of that in a language like OpenACC where you really just want to say here’s a parallel loop, run it across all my resources. That’s a challenge on systems with separate memories. How are you going to manage the memory coherence and allocation with the data computation and data memory? How will you keep the K80s fed.”

Deep Memory is another difficult bottleneck. “If you have deep dynamic structures, multiply linked and nested with their data structures, and you want to move the whole structure over to the device, that’s a specific situation where you have got system memory and device memory and move data from one to the other. We have several different memory pools with different characteristics. With Xeon Phi, for example, you’ve got system memory and multichannel DRAM, high bandwidth memory. Some of these nodes are going to have you system memory in NVRAM and we don’t know quite what the characteristics of that will be but the plan I’m seeing is that it’s byte addressable,” said Wolfe.

“I’ve seen slides – but no circuit design – showing an AMD design where they have APU and CPU cores on chip and multiple types of memory attached – large system memory and a smaller high bandwidth memory – and all of these memories are exposed. They are not managed by the system, not managed by the hardware like a cache; it’s managed by the application. Were trying to see whether and how to manage this in the runtime [by] putting in some data directive that specifies characteristics of the program. I think it’s going to be a significant challenge because we never had a lot of experience with that. It’s not just changing he way you express parallelism, now it changing the memory management as well,” he said.

Challenges aside, OpenACC is working and working well say both Wolfe and Poole. As part of the announcement today, OpenACC cites a 2.5X speedup and significant power reduction on NekCEM (Nekton for Computational Electromagnetics) code achieved at Argonne Leadership Computing Facility.



Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This