Mellanox Advances ‘In-Network Computing’ with ConnectX-5 Adapter

By Tiffany Trader

June 16, 2016

Networking specialist Mellanox has announced ConnectX-5, the next-generation of its 100G InfiniBand and Ethernet adapter line. The company says the new device will help organizations take advantage of real-time data processing for high performance computing (HPC), data analytics, machine learning, national security and ‘Internet of Things’ applications.

ConnectX-5 was designed to connect with any computing infrastructure – x86, Power, GPU, ARM, and FPGA – and it employs a variety of offload engines, which can be classified into two camps. The more established offloading capability supports network functions, such as RDMA, transport offload, and SR-IOV. There’s also a new generation of acceleration engines which are running data algorithms, essentially making the ConnectX-5 a coprocessor.

Significant for HPC, ConnectX-5 continues the approach begun with Switch-IB2 and moves more MPI capabilities into the network. While Switch-IB2 offloads MPI collectives for running on the switch architecture, ConnectX-5 enables MPI Tag Matching and MPI AlltoAll operations, as well as advanced dynamic routing.

With ConnectX-5 and Switch-IB2, 60 percent of the MPI algorithms are now being executed on the network, said Mellanox’s Gilad Shainer. “Looking ahead, we’re probably going to see the entire MPI moved to the network as part of the co-design approach,” he added.

ConnectX-5 also exposes what Mellanox is referring to as in-network memory. With a small memory address space accessible by the application, data can be stored or made accessible on the network devices with the goal of enabling faster reach from different endpoints.

Mellanox positions the offloading approach as part of the larger transition to co-design principles that mine synergies between software and hardware or between the different hardware components. “The way to solve the performance bottlenecks that are now emerging is by running different algorithms in different places,” said Shainer. “ConnectX-5 is the first adapter that brings the co-design architecture into the NIC side.”

“Ten years ago process runtime or MPI collective approaches were running at hundreds of microsecond latencies,” he went on to explain. “Network device latencies were in the range of tens of microseconds, so it was a big part of the overall latency. Fast forward to today and process latencies are in the range of tens of microseconds and network device latency is running about 100 nanoseconds. The question we’re addressing is how do you make another performance improvement in the process latency – move from 10 microseconds to a low single digit of a microseconds – when CPU frequency doesn’t go faster.”

“Computing within network devices makes sense when multiple nodes need to act on the same data,” observed Addison Snell, CEO of analyst firm Intersect360 Research. “In essence, it’s the complement to pushing a computation all the way to a GPU with something like RDMA and you don’t have to move the data off of the GPU in order to compute on it. If something’s extremely local, it can be – on the one side – all the way down at the processing element on the node, but at the other end of the spectrum where it’s something that’s shared between nodes, it can be more effective to do it in the network as opposed to in the microprocessor.”

The offloading approach that Mellanox is championing and delivering on is in direct contrast to the CPU-centric approach, espoused by Intel. Mellanox believes offloading is essential to increasing CPU performance, while Intel is essentially following a system-on-a-chip strategy that as part of its Scalable System Framework offers the simplicity of tight-knit hardware-software stack. Today’s system architecture is still very CPU-centric, but Mellanox and others are advancing a different architectural approach based on specialized best-of-breed components.

Intel’s position is that everything will work better together if it’s integrated onto a single chip, observed Snell. “Now Mellanox is countering by giving powerful counter examples of how things can be engineered for higher performance when they’re not integrated onto the chip, things like in-network computing or their MCM features; those argue against having things all integrated onto a chip — which the market will prefer is certainly yet to be determined.”

“Omni-Path is certainly a formidable announcement that Mellanox has to compete against,” he continued, “but Mellanox has interesting differentiation. I don’t think they’re going just to get mowed over by Intel; I think this will come down to user preference and how they like to see their system architected.”

A 100 Gigabit-per-second NIC, ConnectX-5 enables a reported 600 nanoseconds end-to-end latency within the datacenter (the latency of ConnectX-5 in the range of 100 nanoseconds). From the previous generation, ConnectX-5 takes message rate performance from 150 million messages per second to 200 messages per second, a 30 percent increase. In terms of how this stacks up with the competition, Shainer claimed a 2x performance advantage over the first-generation Omni-Path Architecture (OPA) adapters, which he notes are capable of 89 messages per second, based on a benchmark released by Intel earlier this year. Intel product literature puts architecture maximums for the OPA adapter technology at 160 million messages per second.

ConnectX-5 also has some other new features, including support for PCIe 4.0 (expected next year). There’s an integrated PCIe switch to connect multiple PCIe devices or SSDs to the network adapter. Notably, there are also capabilities for enabling different topologies for datacenters. As one example of this flexibility, an organization can chain or collectively ring multiple adapters together without using a switch to create a small cluster.

Beyond HPC, there are more acceleration engines available for cloud infrastructures. ConnectX-5 includes an embedded switch so when you run multiple virtual machines or guest OS’s, instead of virtual machines needing to go to the switch for doing routing of data between the machines, that routing of data will be done within the NIC. It also brings offloads for NVMe to support NVMe over fabrics, RDMA, and other capabilities, according to Mellanox.

“This is the next logical step in Mellanox’s roadmap,” said Snell of the new Mellanox adapter. “They’re moving everything to consistent 100 Gigabit capability whether you’re on InfiniBand or Ethernet across these different networking cards, components and switches. Everything has to be able to connect at that high-bandwidth speed or else the data doesn’t move across the system well enough. And if the data doesn’t move across the system fast enough, then it doesn’t matter how fast your processor is, it just sits there starved waiting for data.”

Mellanox says it will start shipping ConnectX-5 in Q3 of this year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This