Offloading vs. Onloading: The Case of CPU Utilization

By Gilad Shainer, Mellanox

June 18, 2016

One of the primary conversations these days in the field of networking is whether it is better to onload network functions onto the CPU or better to offload these functions to the interconnect hardware.

Onloading interconnect technology is easier to build, but the issue becomes the CPU utilization; because the CPU must manage and execute network operations, it has less availability for applications, which is its primary purpose.

Offloading, on the other hand, seeks to overcome performance bottlenecks in the CPU by performing the network functions, as well as complex communications operations, such as collective operations or data aggregation operations, on the data while it moves within the cluster. Data is so distributed these days that a performance bottleneck is created by waiting for data to reach the CPU for analysis. Instead, data can be manipulated wherever it is located within the network by using intelligent network devices that offload functions from the CPU. This has the added advantage of increasing the availability of the CPU for compute functions, improving the overall efficiency of the system.

The issue of CPU utilization is one of the primary points of contention between the two options. How you measure CPU utilization and what type of benchmark you use for the test can provide highly misleading results.

For example, a common mistake is to use a common latency test or message rate test to determine the CPU utilization; however these tests typically require the CPU to constantly look for data (that is, polling data on the memory), which makes it seem as though the CPU is at 100 percent utilization, when actually it is not working at all. Using such a test to determine CPU utilization will produce a false result. In the real world, CPUs do not constantly check for data.

So what is the proper way to measure CPU utilization? Ideally, a data bandwidth test or another test that does not use data polling can be used to determine CPU utilization. Alternatively, if a message rate test is used, the test must be configured to avoid data polling loops in order to produce realistic results. Ultimately, the best option is to compare the number of CPU instructions that were actually executed against the number of CPU instructions that could possibly have been executed during the duration of the test. This produces an accurate percentage of CPU utilization.

Another important element to consider is the type of overhead that is being measured. For example, if the test is designed to measure the impact of the network protocol on CPU utilization, the test should only test data transfers between two servers, and not include additional overheads such as MPI, which is in the software layer. If the purpose is to measure the overhead of a software framework, such as MPI, an MPI test should be used, but in that case, the proper MPIs with the proper offloads must be used, if they exist. Not all MPIs support various hardware-based offloads, so it is important to beware of the test conditions.

So now that it’s clear how to measure CPU utilization accurately, the question remains: Which is better, offloading or onloading? We have conducted multiple data throughput tests between servers connected with EDR InfiniBand and the proprietary Omni-Path alternative.

The tests included send-receive data transfers at the maximum data speed supported by each interconnect (~100Gb/s) while measuring the CPU utilization (Table 1). At the data speed of 100Gb/s, InfiniBand only consumed 0.8 percent CPU utilization, while Omni-Path required 59 percent CPU utilization for the same task. Therefore, the CPU availability for the application in the InfiniBand case is 99.2 percent, while for Omni-Path, only 40.4 percent of the CPU cycles are available for applications. Furthermore, we have measured the CPU frequency in each of the cases, since the CPU can reduce its frequency to save power when it is not required to perform at full speed. For the InfiniBand case, the CPU frequency was able to drop to 59 percent of is nominal frequency to enable power saving. For the Omni-Path case, on the other hand, the CPU was performing at full speed, so no power saving could be achieved.

CPU Utilization Comparison

Table 1 – CPU Utilization Comparison

The tool that was used to review the CPU stats was the Intel Performance Counter Monitor toolset. The tool provides a richer set of measurements that provide a detailed system status. Utilizing this tool, we found that Omni-Path did not actually reach the 100G speed, but fell a little short at 95Gb/s. The AFREQ stats reported the CPU frequency that was dynamically set during the test. We were also able to view the number of iterations and active cycles used per the different interconnect protocols (Table 2).

Intel Performance Counter Monitor Tool stats

Table 2 – Intel Performance Counter Monitor Tool stats

Moreover, when InfiniBand is implemented on intelligent devices within the Co-Design architecture, it can further reduce overhead on the CPU by offloading MPI operations as well. Of course, to measure this, the test must be sure to include the software layer in the benchmark such that an accurate real-world result is received. We plan to perform various further tests at different applications levels in the future to demonstrate the significant advantages of InfiniBand.

Ultimately, InfiniBand implements offloading specifically in order to reduce the overhead on the CPU, and, as the testing herein indicates, it works exactly as it was designed. If someone shows results that indicate otherwise, it is worthwhile to investigate the circumstances of the testing to better understand how the results were achieved. In all likelihood, the results are misleading and do not accurately reflect real-world conditions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This