Offloading vs. Onloading: The Case of CPU Utilization

By Gilad Shainer, Mellanox

June 18, 2016

One of the primary conversations these days in the field of networking is whether it is better to onload network functions onto the CPU or better to offload these functions to the interconnect hardware.

Onloading interconnect technology is easier to build, but the issue becomes the CPU utilization; because the CPU must manage and execute network operations, it has less availability for applications, which is its primary purpose.

Offloading, on the other hand, seeks to overcome performance bottlenecks in the CPU by performing the network functions, as well as complex communications operations, such as collective operations or data aggregation operations, on the data while it moves within the cluster. Data is so distributed these days that a performance bottleneck is created by waiting for data to reach the CPU for analysis. Instead, data can be manipulated wherever it is located within the network by using intelligent network devices that offload functions from the CPU. This has the added advantage of increasing the availability of the CPU for compute functions, improving the overall efficiency of the system.

The issue of CPU utilization is one of the primary points of contention between the two options. How you measure CPU utilization and what type of benchmark you use for the test can provide highly misleading results.

For example, a common mistake is to use a common latency test or message rate test to determine the CPU utilization; however these tests typically require the CPU to constantly look for data (that is, polling data on the memory), which makes it seem as though the CPU is at 100 percent utilization, when actually it is not working at all. Using such a test to determine CPU utilization will produce a false result. In the real world, CPUs do not constantly check for data.

So what is the proper way to measure CPU utilization? Ideally, a data bandwidth test or another test that does not use data polling can be used to determine CPU utilization. Alternatively, if a message rate test is used, the test must be configured to avoid data polling loops in order to produce realistic results. Ultimately, the best option is to compare the number of CPU instructions that were actually executed against the number of CPU instructions that could possibly have been executed during the duration of the test. This produces an accurate percentage of CPU utilization.

Another important element to consider is the type of overhead that is being measured. For example, if the test is designed to measure the impact of the network protocol on CPU utilization, the test should only test data transfers between two servers, and not include additional overheads such as MPI, which is in the software layer. If the purpose is to measure the overhead of a software framework, such as MPI, an MPI test should be used, but in that case, the proper MPIs with the proper offloads must be used, if they exist. Not all MPIs support various hardware-based offloads, so it is important to beware of the test conditions.

So now that it’s clear how to measure CPU utilization accurately, the question remains: Which is better, offloading or onloading? We have conducted multiple data throughput tests between servers connected with EDR InfiniBand and the proprietary Omni-Path alternative.

The tests included send-receive data transfers at the maximum data speed supported by each interconnect (~100Gb/s) while measuring the CPU utilization (Table 1). At the data speed of 100Gb/s, InfiniBand only consumed 0.8 percent CPU utilization, while Omni-Path required 59 percent CPU utilization for the same task. Therefore, the CPU availability for the application in the InfiniBand case is 99.2 percent, while for Omni-Path, only 40.4 percent of the CPU cycles are available for applications. Furthermore, we have measured the CPU frequency in each of the cases, since the CPU can reduce its frequency to save power when it is not required to perform at full speed. For the InfiniBand case, the CPU frequency was able to drop to 59 percent of is nominal frequency to enable power saving. For the Omni-Path case, on the other hand, the CPU was performing at full speed, so no power saving could be achieved.

CPU Utilization Comparison

Table 1 – CPU Utilization Comparison

The tool that was used to review the CPU stats was the Intel Performance Counter Monitor toolset. The tool provides a richer set of measurements that provide a detailed system status. Utilizing this tool, we found that Omni-Path did not actually reach the 100G speed, but fell a little short at 95Gb/s. The AFREQ stats reported the CPU frequency that was dynamically set during the test. We were also able to view the number of iterations and active cycles used per the different interconnect protocols (Table 2).

Intel Performance Counter Monitor Tool stats

Table 2 – Intel Performance Counter Monitor Tool stats

Moreover, when InfiniBand is implemented on intelligent devices within the Co-Design architecture, it can further reduce overhead on the CPU by offloading MPI operations as well. Of course, to measure this, the test must be sure to include the software layer in the benchmark such that an accurate real-world result is received. We plan to perform various further tests at different applications levels in the future to demonstrate the significant advantages of InfiniBand.

Ultimately, InfiniBand implements offloading specifically in order to reduce the overhead on the CPU, and, as the testing herein indicates, it works exactly as it was designed. If someone shows results that indicate otherwise, it is worthwhile to investigate the circumstances of the testing to better understand how the results were achieved. In all likelihood, the results are misleading and do not accurately reflect real-world conditions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops machine based on IBM’s Power9 chip and being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the 180 petaflops system being built at Oak Ridge National Read more…

By John Russell

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This