Offloading vs. Onloading: The Case of CPU Utilization

By Gilad Shainer, Mellanox

June 18, 2016

One of the primary conversations these days in the field of networking is whether it is better to onload network functions onto the CPU or better to offload these functions to the interconnect hardware.

Onloading interconnect technology is easier to build, but the issue becomes the CPU utilization; because the CPU must manage and execute network operations, it has less availability for applications, which is its primary purpose.

Offloading, on the other hand, seeks to overcome performance bottlenecks in the CPU by performing the network functions, as well as complex communications operations, such as collective operations or data aggregation operations, on the data while it moves within the cluster. Data is so distributed these days that a performance bottleneck is created by waiting for data to reach the CPU for analysis. Instead, data can be manipulated wherever it is located within the network by using intelligent network devices that offload functions from the CPU. This has the added advantage of increasing the availability of the CPU for compute functions, improving the overall efficiency of the system.

The issue of CPU utilization is one of the primary points of contention between the two options. How you measure CPU utilization and what type of benchmark you use for the test can provide highly misleading results.

For example, a common mistake is to use a common latency test or message rate test to determine the CPU utilization; however these tests typically require the CPU to constantly look for data (that is, polling data on the memory), which makes it seem as though the CPU is at 100 percent utilization, when actually it is not working at all. Using such a test to determine CPU utilization will produce a false result. In the real world, CPUs do not constantly check for data.

So what is the proper way to measure CPU utilization? Ideally, a data bandwidth test or another test that does not use data polling can be used to determine CPU utilization. Alternatively, if a message rate test is used, the test must be configured to avoid data polling loops in order to produce realistic results. Ultimately, the best option is to compare the number of CPU instructions that were actually executed against the number of CPU instructions that could possibly have been executed during the duration of the test. This produces an accurate percentage of CPU utilization.

Another important element to consider is the type of overhead that is being measured. For example, if the test is designed to measure the impact of the network protocol on CPU utilization, the test should only test data transfers between two servers, and not include additional overheads such as MPI, which is in the software layer. If the purpose is to measure the overhead of a software framework, such as MPI, an MPI test should be used, but in that case, the proper MPIs with the proper offloads must be used, if they exist. Not all MPIs support various hardware-based offloads, so it is important to beware of the test conditions.

So now that it’s clear how to measure CPU utilization accurately, the question remains: Which is better, offloading or onloading? We have conducted multiple data throughput tests between servers connected with EDR InfiniBand and the proprietary Omni-Path alternative.

The tests included send-receive data transfers at the maximum data speed supported by each interconnect (~100Gb/s) while measuring the CPU utilization (Table 1). At the data speed of 100Gb/s, InfiniBand only consumed 0.8 percent CPU utilization, while Omni-Path required 59 percent CPU utilization for the same task. Therefore, the CPU availability for the application in the InfiniBand case is 99.2 percent, while for Omni-Path, only 40.4 percent of the CPU cycles are available for applications. Furthermore, we have measured the CPU frequency in each of the cases, since the CPU can reduce its frequency to save power when it is not required to perform at full speed. For the InfiniBand case, the CPU frequency was able to drop to 59 percent of is nominal frequency to enable power saving. For the Omni-Path case, on the other hand, the CPU was performing at full speed, so no power saving could be achieved.

CPU Utilization Comparison

Table 1 – CPU Utilization Comparison

The tool that was used to review the CPU stats was the Intel Performance Counter Monitor toolset. The tool provides a richer set of measurements that provide a detailed system status. Utilizing this tool, we found that Omni-Path did not actually reach the 100G speed, but fell a little short at 95Gb/s. The AFREQ stats reported the CPU frequency that was dynamically set during the test. We were also able to view the number of iterations and active cycles used per the different interconnect protocols (Table 2).

Intel Performance Counter Monitor Tool stats

Table 2 – Intel Performance Counter Monitor Tool stats

Moreover, when InfiniBand is implemented on intelligent devices within the Co-Design architecture, it can further reduce overhead on the CPU by offloading MPI operations as well. Of course, to measure this, the test must be sure to include the software layer in the benchmark such that an accurate real-world result is received. We plan to perform various further tests at different applications levels in the future to demonstrate the significant advantages of InfiniBand.

Ultimately, InfiniBand implements offloading specifically in order to reduce the overhead on the CPU, and, as the testing herein indicates, it works exactly as it was designed. If someone shows results that indicate otherwise, it is worthwhile to investigate the circumstances of the testing to better understand how the results were achieved. In all likelihood, the results are misleading and do not accurately reflect real-world conditions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Stampede2 ‘Shocks’ with New Shock Turbulence Insights

August 19, 2019

Shockwaves play roles in everything from high-speed aircraft to supernovae – and now, supercomputer-powered research from the Texas A&M University and the Texas Advanced Computing Center (TACC) is helping to shed l Read more…

By Oliver Peckham

Nanosheet Transistors: The Last Step in Moore’s Law?

August 19, 2019

Forget for a moment the clamor around the decline of Moore’s Law. It's had a brilliant run, something to be marveled at given it’s not a law at all. Squeezing out the last bit of performance that roughly corresponds Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip using standard CMOS fabrication. At Hot Chips 31 in Stanfor Read more…

By Tiffany Trader

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This