Offloading vs. Onloading: The Case of CPU Utilization

By Gilad Shainer, Mellanox

June 18, 2016

One of the primary conversations these days in the field of networking is whether it is better to onload network functions onto the CPU or better to offload these functions to the interconnect hardware.

Onloading interconnect technology is easier to build, but the issue becomes the CPU utilization; because the CPU must manage and execute network operations, it has less availability for applications, which is its primary purpose.

Offloading, on the other hand, seeks to overcome performance bottlenecks in the CPU by performing the network functions, as well as complex communications operations, such as collective operations or data aggregation operations, on the data while it moves within the cluster. Data is so distributed these days that a performance bottleneck is created by waiting for data to reach the CPU for analysis. Instead, data can be manipulated wherever it is located within the network by using intelligent network devices that offload functions from the CPU. This has the added advantage of increasing the availability of the CPU for compute functions, improving the overall efficiency of the system.

The issue of CPU utilization is one of the primary points of contention between the two options. How you measure CPU utilization and what type of benchmark you use for the test can provide highly misleading results.

For example, a common mistake is to use a common latency test or message rate test to determine the CPU utilization; however these tests typically require the CPU to constantly look for data (that is, polling data on the memory), which makes it seem as though the CPU is at 100 percent utilization, when actually it is not working at all. Using such a test to determine CPU utilization will produce a false result. In the real world, CPUs do not constantly check for data.

So what is the proper way to measure CPU utilization? Ideally, a data bandwidth test or another test that does not use data polling can be used to determine CPU utilization. Alternatively, if a message rate test is used, the test must be configured to avoid data polling loops in order to produce realistic results. Ultimately, the best option is to compare the number of CPU instructions that were actually executed against the number of CPU instructions that could possibly have been executed during the duration of the test. This produces an accurate percentage of CPU utilization.

Another important element to consider is the type of overhead that is being measured. For example, if the test is designed to measure the impact of the network protocol on CPU utilization, the test should only test data transfers between two servers, and not include additional overheads such as MPI, which is in the software layer. If the purpose is to measure the overhead of a software framework, such as MPI, an MPI test should be used, but in that case, the proper MPIs with the proper offloads must be used, if they exist. Not all MPIs support various hardware-based offloads, so it is important to beware of the test conditions.

So now that it’s clear how to measure CPU utilization accurately, the question remains: Which is better, offloading or onloading? We have conducted multiple data throughput tests between servers connected with EDR InfiniBand and the proprietary Omni-Path alternative.

The tests included send-receive data transfers at the maximum data speed supported by each interconnect (~100Gb/s) while measuring the CPU utilization (Table 1). At the data speed of 100Gb/s, InfiniBand only consumed 0.8 percent CPU utilization, while Omni-Path required 59 percent CPU utilization for the same task. Therefore, the CPU availability for the application in the InfiniBand case is 99.2 percent, while for Omni-Path, only 40.4 percent of the CPU cycles are available for applications. Furthermore, we have measured the CPU frequency in each of the cases, since the CPU can reduce its frequency to save power when it is not required to perform at full speed. For the InfiniBand case, the CPU frequency was able to drop to 59 percent of is nominal frequency to enable power saving. For the Omni-Path case, on the other hand, the CPU was performing at full speed, so no power saving could be achieved.

CPU Utilization Comparison

Table 1 – CPU Utilization Comparison

The tool that was used to review the CPU stats was the Intel Performance Counter Monitor toolset. The tool provides a richer set of measurements that provide a detailed system status. Utilizing this tool, we found that Omni-Path did not actually reach the 100G speed, but fell a little short at 95Gb/s. The AFREQ stats reported the CPU frequency that was dynamically set during the test. We were also able to view the number of iterations and active cycles used per the different interconnect protocols (Table 2).

Intel Performance Counter Monitor Tool stats

Table 2 – Intel Performance Counter Monitor Tool stats

Moreover, when InfiniBand is implemented on intelligent devices within the Co-Design architecture, it can further reduce overhead on the CPU by offloading MPI operations as well. Of course, to measure this, the test must be sure to include the software layer in the benchmark such that an accurate real-world result is received. We plan to perform various further tests at different applications levels in the future to demonstrate the significant advantages of InfiniBand.

Ultimately, InfiniBand implements offloading specifically in order to reduce the overhead on the CPU, and, as the testing herein indicates, it works exactly as it was designed. If someone shows results that indicate otherwise, it is worthwhile to investigate the circumstances of the testing to better understand how the results were achieved. In all likelihood, the results are misleading and do not accurately reflect real-world conditions.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire