China Debuts 93-Petaflops ‘Sunway’ with Homegrown Processors

By Tiffany Trader

June 19, 2016

You may have heard the rumors, but now it’s official: China has built and deployed a 93 petaflops LINPACK (125 petaflops peak) Chinese-made supercomputer at its Wuxi Supercomputer Center, near Shanghai. A few days ago HPCwire received an advance copy of a report on the new system prepared by TOP500 author Jack Dongarra detailing the feeds and speeds and proffering perspective on its strengths and weaknesses.

Originally, Tianhe-2 was on deck to be China’s first 100-petaflopper based on a planned infusion of Intel Xeon Knights Landing CPUs. There was chatter that China could even be standing up two 100-petafloppers in time for the ISC TOP500 list publication, but the US embargo regulations restricting the sale of US processor technology into China pushed back the timeline. It was this trade restriction that spurred China to refocus efforts on its native chip technology. At the 12th Asian Connections workshop in Wuhan, China, in April, Beihang University Professor Depei Qian, who is helping steer the nation’s supercomputing roadmap as part of the 863 project, stressed the need for “self-controllable HPC technologies” on account of a “lesson learnt from the embargo regulation.”

During ISC 2016 this week, we expect more details on the fully-realized Tianhe-2 to be revealed as well as an update on the nation’s exascale plans now that Tianhe-3 has been named as the targeted first exascale system. (Recall that China has announced it will stand up an exaflops (peak) machine by 2020.)

Sunway TaihuLight System 2016
Sunway TaihuLight System computer room

The new machine, the Sunway TaihuLight system, achieved 93 petaflops out of a theoretical peak of 125 petaflops, giving it an efficiency of 74.51 percent. The run made use of 165,120 nodes using 1.2 PB total memory (7.2 TB of the memory of each node). The time to completion was 3.7 hours at an average power consumption of 15.37 MW. This gives it an energy efficiency of 6 gigaflops-per-watt, counting the processor, memory and interconnect network. The 28 MW cooling system from Climaveneta uses closed-coupled chilled water cooling with a customized liquid water-cooling unit.

As the new TOP500 champ, Sunway TaihuLight steals the top spot from Tianhe-2, which sat in the spot for three full years (and six list iterations), since China knocked the US Oak Ridge Titan machine off its perch in June 2013. Notably, China also stole list system share and performance share from the US (more on that to come).

The computational heart of Sunway TaihuLight is the SW26010 processor, which was designed by the Shanghai High Performance IC Design Center.

Each processor chip has four of these:

Sunway TaihuLight core group for node

Which come together like this:

Sunway TaihuLight basic layout of a node

The first figure depicts one core group (CG) connected to a Network on Chip (NoC). Each CG is composed of a Management Processing Element (MPE) and 64 Computing Processing Elements (CPEs) arranged in an 8 by 8 grid.

The second figure shows the domestically-made multicore SW26010 processor (which is one compute node of Sunway); it consists of 4 CPEs and 4 MPEs for a total of 260 cores. There are 4 Memory Controllers (MC), and a Network on Chip (NoC), which is connected to the System Interface (SI).  Each of the four MPE, CPE, and MC have access to 8GB of DDR3 memory. In the complete system, there are 40,960 nodes and 10,649,600 cores and 1.31 PB of memory.

As detailed in the report, “The MPE’s and CPE’s are based on a RISC architecture, 64-bit, SIMD, out of order microstructure. Both the MPE and the CPE participate in the user’s application. The MPE performance management, communication, and computation while the CPEs mainly perform computations. (The MPE can also participate in the computations.)”

It continues: “Each core of the CPE has a single floating point pipeline that can perform 8 flops per cycle per core (64-bit floating point arithmetic) and the MPE has a dual pipeline each of which can perform 8 flops per cycle per pipeline (64-bit floating point arithmetic). The cycle time for the cores is 1.45 GHz, so a CPE core has a peak performance of 8 flops/cycle * 1.45 GHz or 11.6 Gflop/s and a core of the MPE has a peak performance of 16 flops/cycle * 1.45 GHz or 23.2 Gflop/s. There is just one thread of execution per physical core.”

“The MPE’s and CPE’s are based on a RISC architecture, 64-bit, SIMD, out of order microstructure. Both the MPE and the CPE participate in the user’s application. The MPE performance management, communication, and computation while the CPEs mainly perform computations. (The MPE can also participate in the computations.)

The custom-built Sunway interconnect uses PCIe 3.0 connections between nodes as part of the Sunway Network. The network employs three different levels: the central switching network at the top, the super node network in the middle, and the resource sharing network at the bottom. The bisection network bandwidth is 70 TB/s, with a network diameter of 7. MPI communication between nodes is 12 GB/second with latency of around 1 us.

The complete system spans 40 cabinets, each with 4 Supernodes, which comprise 256 Nodes. Doing the multiplication, this comes out to 40,960 nodes total and 10,649,600 cores. Each node has a peak floating point performance of 3.06 teraflops.

The system software includes Sunway Raise OS 2.0.5 based on Linux as the operating system. Dongarra’s report also mentions basic compiler components, such as C/C++, and Fortran compilers, an automatic vectorization tool, and basic math libraries. Sunway OpenACC supports OpenACC 2.0

The Chinese supercomputing leadership is targeting the new Sunway machine at four key areas: advanced manufacturing (CAE, CFD), earth system modeling and weather forecasting; life science, and big data analytics.

China has been called out in the past for putting hardware ahead of software development. China announced that is has (at least) three applications that are on the finalist list for the Gordon Bell Award, which will be announced at SC16. The accepted submissions include a fully-implicit nonhydrostatic dynamic solver for cloud-resolving atmospheric simulation; a highly effective global surface wave numerical simulation with ultra-high resolution; and a large scale phase-field simulation for coarsening dynamics based on Cahn-Hilliard equation with degenerated mobility. The report from Dongarra notes that all three applications have scaled to about 8 million cores, just under 80 percent of the total system.

In his report on the system, Dongarra acknowledged the magnitude of the accomplishment, pointing out the significance of the 93 petaflops LINPACK reaching 74 percent of peak and achieving a  6 gigaflops-per-watt.  “The Sunway TaihuLight is twice as fast and three times as efficient as the system it displaces in the number one spot,” he wrote. “The fact that there are sizeable applications and Gordon Bell contender applications running on the system is impressive and shows that the system is capable of running real applications and not just a stunt machine.”

However, as we know LINPACK does not tell the whole story. On the HPCG benchmark, Sunway TaihuLight reported only .371 petaflops, which is .3 percent of peak. Compare this with 0.580 petaflops on Tianhe-2 (1.1 percent of peak) and .322 petaflops on Titan (1.2 percent of peak). RIKEN’s K computer reports 0.460 HPCG performance, 4.1 percent theoretical peak.

“The HPCG performance at only 0.3% of peak performance shows the weakness of the architecture with slow memory and modest interconnect performance,” wrote Dongarra. “So for many “real” applications the performance will be no where near the peak performance rate.”

It’s a point the distinguished University of Tennessee professor has made before. At the 12th Asian Connections workshop, he cautioned that “peak and HPL may be very misleading” and that most applications will not achieve near this high-water mark.

There is also a question of China being behind the US in process technology. We are still waiting for that spec to be made public, but it was at one point expected that the next-generation Shenwei would be manufactured on 28-nm process technology. We will update that information as well as memory bandwidth and fabric I/O as it becomes available.

In concluding his report, Dongarra pointed to China’s strengths in standing up another number one system: “As the first top one system of China that is completely based on homegrown processors, the Sunway TaihuLight system demonstrates the significant progress that China has made in the domain of designing and manufacturing large-scale computation systems. The fact that there are sizeable applications and Gordon Bell contender applications running on the system is impressive and shows that the system is capable of running real applications and not just a stunt machine.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This