China Debuts 93-Petaflops ‘Sunway’ with Homegrown Processors

By Tiffany Trader

June 19, 2016

You may have heard the rumors, but now it’s official: China has built and deployed a 93 petaflops LINPACK (125 petaflops peak) Chinese-made supercomputer at its Wuxi Supercomputer Center, near Shanghai. A few days ago HPCwire received an advance copy of a report on the new system prepared by TOP500 author Jack Dongarra detailing the feeds and speeds and proffering perspective on its strengths and weaknesses.

Originally, Tianhe-2 was on deck to be China’s first 100-petaflopper based on a planned infusion of Intel Xeon Knights Landing CPUs. There was chatter that China could even be standing up two 100-petafloppers in time for the ISC TOP500 list publication, but the US embargo regulations restricting the sale of US processor technology into China pushed back the timeline. It was this trade restriction that spurred China to refocus efforts on its native chip technology. At the 12th Asian Connections workshop in Wuhan, China, in April, Beihang University Professor Depei Qian, who is helping steer the nation’s supercomputing roadmap as part of the 863 project, stressed the need for “self-controllable HPC technologies” on account of a “lesson learnt from the embargo regulation.”

During ISC 2016 this week, we expect more details on the fully-realized Tianhe-2 to be revealed as well as an update on the nation’s exascale plans now that Tianhe-3 has been named as the targeted first exascale system. (Recall that China has announced it will stand up an exaflops (peak) machine by 2020.)

Sunway TaihuLight System 2016
Sunway TaihuLight System computer room

The new machine, the Sunway TaihuLight system, achieved 93 petaflops out of a theoretical peak of 125 petaflops, giving it an efficiency of 74.51 percent. The run made use of 165,120 nodes using 1.2 PB total memory (7.2 TB of the memory of each node). The time to completion was 3.7 hours at an average power consumption of 15.37 MW. This gives it an energy efficiency of 6 gigaflops-per-watt, counting the processor, memory and interconnect network. The 28 MW cooling system from Climaveneta uses closed-coupled chilled water cooling with a customized liquid water-cooling unit.

As the new TOP500 champ, Sunway TaihuLight steals the top spot from Tianhe-2, which sat in the spot for three full years (and six list iterations), since China knocked the US Oak Ridge Titan machine off its perch in June 2013. Notably, China also stole list system share and performance share from the US (more on that to come).

The computational heart of Sunway TaihuLight is the SW26010 processor, which was designed by the Shanghai High Performance IC Design Center.

Each processor chip has four of these:

Sunway TaihuLight core group for node

Which come together like this:

Sunway TaihuLight basic layout of a node

The first figure depicts one core group (CG) connected to a Network on Chip (NoC). Each CG is composed of a Management Processing Element (MPE) and 64 Computing Processing Elements (CPEs) arranged in an 8 by 8 grid.

The second figure shows the domestically-made multicore SW26010 processor (which is one compute node of Sunway); it consists of 4 CPEs and 4 MPEs for a total of 260 cores. There are 4 Memory Controllers (MC), and a Network on Chip (NoC), which is connected to the System Interface (SI).  Each of the four MPE, CPE, and MC have access to 8GB of DDR3 memory. In the complete system, there are 40,960 nodes and 10,649,600 cores and 1.31 PB of memory.

As detailed in the report, “The MPE’s and CPE’s are based on a RISC architecture, 64-bit, SIMD, out of order microstructure. Both the MPE and the CPE participate in the user’s application. The MPE performance management, communication, and computation while the CPEs mainly perform computations. (The MPE can also participate in the computations.)”

It continues: “Each core of the CPE has a single floating point pipeline that can perform 8 flops per cycle per core (64-bit floating point arithmetic) and the MPE has a dual pipeline each of which can perform 8 flops per cycle per pipeline (64-bit floating point arithmetic). The cycle time for the cores is 1.45 GHz, so a CPE core has a peak performance of 8 flops/cycle * 1.45 GHz or 11.6 Gflop/s and a core of the MPE has a peak performance of 16 flops/cycle * 1.45 GHz or 23.2 Gflop/s. There is just one thread of execution per physical core.”

“The MPE’s and CPE’s are based on a RISC architecture, 64-bit, SIMD, out of order microstructure. Both the MPE and the CPE participate in the user’s application. The MPE performance management, communication, and computation while the CPEs mainly perform computations. (The MPE can also participate in the computations.)

The custom-built Sunway interconnect uses PCIe 3.0 connections between nodes as part of the Sunway Network. The network employs three different levels: the central switching network at the top, the super node network in the middle, and the resource sharing network at the bottom. The bisection network bandwidth is 70 TB/s, with a network diameter of 7. MPI communication between nodes is 12 GB/second with latency of around 1 us.

The complete system spans 40 cabinets, each with 4 Supernodes, which comprise 256 Nodes. Doing the multiplication, this comes out to 40,960 nodes total and 10,649,600 cores. Each node has a peak floating point performance of 3.06 teraflops.

The system software includes Sunway Raise OS 2.0.5 based on Linux as the operating system. Dongarra’s report also mentions basic compiler components, such as C/C++, and Fortran compilers, an automatic vectorization tool, and basic math libraries. Sunway OpenACC supports OpenACC 2.0

The Chinese supercomputing leadership is targeting the new Sunway machine at four key areas: advanced manufacturing (CAE, CFD), earth system modeling and weather forecasting; life science, and big data analytics.

China has been called out in the past for putting hardware ahead of software development. China announced that is has (at least) three applications that are on the finalist list for the Gordon Bell Award, which will be announced at SC16. The accepted submissions include a fully-implicit nonhydrostatic dynamic solver for cloud-resolving atmospheric simulation; a highly effective global surface wave numerical simulation with ultra-high resolution; and a large scale phase-field simulation for coarsening dynamics based on Cahn-Hilliard equation with degenerated mobility. The report from Dongarra notes that all three applications have scaled to about 8 million cores, just under 80 percent of the total system.

In his report on the system, Dongarra acknowledged the magnitude of the accomplishment, pointing out the significance of the 93 petaflops LINPACK reaching 74 percent of peak and achieving a  6 gigaflops-per-watt.  “The Sunway TaihuLight is twice as fast and three times as efficient as the system it displaces in the number one spot,” he wrote. “The fact that there are sizeable applications and Gordon Bell contender applications running on the system is impressive and shows that the system is capable of running real applications and not just a stunt machine.”

However, as we know LINPACK does not tell the whole story. On the HPCG benchmark, Sunway TaihuLight reported only .371 petaflops, which is .3 percent of peak. Compare this with 0.580 petaflops on Tianhe-2 (1.1 percent of peak) and .322 petaflops on Titan (1.2 percent of peak). RIKEN’s K computer reports 0.460 HPCG performance, 4.1 percent theoretical peak.

“The HPCG performance at only 0.3% of peak performance shows the weakness of the architecture with slow memory and modest interconnect performance,” wrote Dongarra. “So for many “real” applications the performance will be no where near the peak performance rate.”

It’s a point the distinguished University of Tennessee professor has made before. At the 12th Asian Connections workshop, he cautioned that “peak and HPL may be very misleading” and that most applications will not achieve near this high-water mark.

There is also a question of China being behind the US in process technology. We are still waiting for that spec to be made public, but it was at one point expected that the next-generation Shenwei would be manufactured on 28-nm process technology. We will update that information as well as memory bandwidth and fabric I/O as it becomes available.

In concluding his report, Dongarra pointed to China’s strengths in standing up another number one system: “As the first top one system of China that is completely based on homegrown processors, the Sunway TaihuLight system demonstrates the significant progress that China has made in the domain of designing and manufacturing large-scale computation systems. The fact that there are sizeable applications and Gordon Bell contender applications running on the system is impressive and shows that the system is capable of running real applications and not just a stunt machine.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This