China Debuts 93-Petaflops ‘Sunway’ with Homegrown Processors

By Tiffany Trader

June 19, 2016

You may have heard the rumors, but now it’s official: China has built and deployed a 93 petaflops LINPACK (125 petaflops peak) Chinese-made supercomputer at its Wuxi Supercomputer Center, near Shanghai. A few days ago HPCwire received an advance copy of a report on the new system prepared by TOP500 author Jack Dongarra detailing the feeds and speeds and proffering perspective on its strengths and weaknesses.

Originally, Tianhe-2 was on deck to be China’s first 100-petaflopper based on a planned infusion of Intel Xeon Knights Landing CPUs. There was chatter that China could even be standing up two 100-petafloppers in time for the ISC TOP500 list publication, but the US embargo regulations restricting the sale of US processor technology into China pushed back the timeline. It was this trade restriction that spurred China to refocus efforts on its native chip technology. At the 12th Asian Connections workshop in Wuhan, China, in April, Beihang University Professor Depei Qian, who is helping steer the nation’s supercomputing roadmap as part of the 863 project, stressed the need for “self-controllable HPC technologies” on account of a “lesson learnt from the embargo regulation.”

During ISC 2016 this week, we expect more details on the fully-realized Tianhe-2 to be revealed as well as an update on the nation’s exascale plans now that Tianhe-3 has been named as the targeted first exascale system. (Recall that China has announced it will stand up an exaflops (peak) machine by 2020.)

Sunway TaihuLight System 2016
Sunway TaihuLight System computer room

The new machine, the Sunway TaihuLight system, achieved 93 petaflops out of a theoretical peak of 125 petaflops, giving it an efficiency of 74.51 percent. The run made use of 165,120 nodes using 1.2 PB total memory (7.2 TB of the memory of each node). The time to completion was 3.7 hours at an average power consumption of 15.37 MW. This gives it an energy efficiency of 6 gigaflops-per-watt, counting the processor, memory and interconnect network. The 28 MW cooling system from Climaveneta uses closed-coupled chilled water cooling with a customized liquid water-cooling unit.

As the new TOP500 champ, Sunway TaihuLight steals the top spot from Tianhe-2, which sat in the spot for three full years (and six list iterations), since China knocked the US Oak Ridge Titan machine off its perch in June 2013. Notably, China also stole list system share and performance share from the US (more on that to come).

The computational heart of Sunway TaihuLight is the SW26010 processor, which was designed by the Shanghai High Performance IC Design Center.

Each processor chip has four of these:

Sunway TaihuLight core group for node

Which come together like this:

Sunway TaihuLight basic layout of a node

The first figure depicts one core group (CG) connected to a Network on Chip (NoC). Each CG is composed of a Management Processing Element (MPE) and 64 Computing Processing Elements (CPEs) arranged in an 8 by 8 grid.

The second figure shows the domestically-made multicore SW26010 processor (which is one compute node of Sunway); it consists of 4 CPEs and 4 MPEs for a total of 260 cores. There are 4 Memory Controllers (MC), and a Network on Chip (NoC), which is connected to the System Interface (SI).  Each of the four MPE, CPE, and MC have access to 8GB of DDR3 memory. In the complete system, there are 40,960 nodes and 10,649,600 cores and 1.31 PB of memory.

As detailed in the report, “The MPE’s and CPE’s are based on a RISC architecture, 64-bit, SIMD, out of order microstructure. Both the MPE and the CPE participate in the user’s application. The MPE performance management, communication, and computation while the CPEs mainly perform computations. (The MPE can also participate in the computations.)”

It continues: “Each core of the CPE has a single floating point pipeline that can perform 8 flops per cycle per core (64-bit floating point arithmetic) and the MPE has a dual pipeline each of which can perform 8 flops per cycle per pipeline (64-bit floating point arithmetic). The cycle time for the cores is 1.45 GHz, so a CPE core has a peak performance of 8 flops/cycle * 1.45 GHz or 11.6 Gflop/s and a core of the MPE has a peak performance of 16 flops/cycle * 1.45 GHz or 23.2 Gflop/s. There is just one thread of execution per physical core.”

“The MPE’s and CPE’s are based on a RISC architecture, 64-bit, SIMD, out of order microstructure. Both the MPE and the CPE participate in the user’s application. The MPE performance management, communication, and computation while the CPEs mainly perform computations. (The MPE can also participate in the computations.)

The custom-built Sunway interconnect uses PCIe 3.0 connections between nodes as part of the Sunway Network. The network employs three different levels: the central switching network at the top, the super node network in the middle, and the resource sharing network at the bottom. The bisection network bandwidth is 70 TB/s, with a network diameter of 7. MPI communication between nodes is 12 GB/second with latency of around 1 us.

The complete system spans 40 cabinets, each with 4 Supernodes, which comprise 256 Nodes. Doing the multiplication, this comes out to 40,960 nodes total and 10,649,600 cores. Each node has a peak floating point performance of 3.06 teraflops.

The system software includes Sunway Raise OS 2.0.5 based on Linux as the operating system. Dongarra’s report also mentions basic compiler components, such as C/C++, and Fortran compilers, an automatic vectorization tool, and basic math libraries. Sunway OpenACC supports OpenACC 2.0

The Chinese supercomputing leadership is targeting the new Sunway machine at four key areas: advanced manufacturing (CAE, CFD), earth system modeling and weather forecasting; life science, and big data analytics.

China has been called out in the past for putting hardware ahead of software development. China announced that is has (at least) three applications that are on the finalist list for the Gordon Bell Award, which will be announced at SC16. The accepted submissions include a fully-implicit nonhydrostatic dynamic solver for cloud-resolving atmospheric simulation; a highly effective global surface wave numerical simulation with ultra-high resolution; and a large scale phase-field simulation for coarsening dynamics based on Cahn-Hilliard equation with degenerated mobility. The report from Dongarra notes that all three applications have scaled to about 8 million cores, just under 80 percent of the total system.

In his report on the system, Dongarra acknowledged the magnitude of the accomplishment, pointing out the significance of the 93 petaflops LINPACK reaching 74 percent of peak and achieving a  6 gigaflops-per-watt.  “The Sunway TaihuLight is twice as fast and three times as efficient as the system it displaces in the number one spot,” he wrote. “The fact that there are sizeable applications and Gordon Bell contender applications running on the system is impressive and shows that the system is capable of running real applications and not just a stunt machine.”

However, as we know LINPACK does not tell the whole story. On the HPCG benchmark, Sunway TaihuLight reported only .371 petaflops, which is .3 percent of peak. Compare this with 0.580 petaflops on Tianhe-2 (1.1 percent of peak) and .322 petaflops on Titan (1.2 percent of peak). RIKEN’s K computer reports 0.460 HPCG performance, 4.1 percent theoretical peak.

“The HPCG performance at only 0.3% of peak performance shows the weakness of the architecture with slow memory and modest interconnect performance,” wrote Dongarra. “So for many “real” applications the performance will be no where near the peak performance rate.”

It’s a point the distinguished University of Tennessee professor has made before. At the 12th Asian Connections workshop, he cautioned that “peak and HPL may be very misleading” and that most applications will not achieve near this high-water mark.

There is also a question of China being behind the US in process technology. We are still waiting for that spec to be made public, but it was at one point expected that the next-generation Shenwei would be manufactured on 28-nm process technology. We will update that information as well as memory bandwidth and fabric I/O as it becomes available.

In concluding his report, Dongarra pointed to China’s strengths in standing up another number one system: “As the first top one system of China that is completely based on homegrown processors, the Sunway TaihuLight system demonstrates the significant progress that China has made in the domain of designing and manufacturing large-scale computation systems. The fact that there are sizeable applications and Gordon Bell contender applications running on the system is impressive and shows that the system is capable of running real applications and not just a stunt machine.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This