Baidu Researcher Pushes GPU Scalability for Deep Learning

By Tiffany Trader

June 20, 2016

Editor’s Note: While Andrew Ng, chief scientist at Baidu was delivering his ISC keynote this morning on how HPC is supercharging AI, his colleague Greg Diamos, research scientist at Baidu’s Silicon Valley AI Lab, was preparing to present a paper on GPU-based deep learning at the 33rd International Conference on Machine Learning in New York.

Greg Diamos, senior researcher, Silicon Valley AI Lab, Baidu, is on the front lines of the reinvigorated frontier of machine learning. Before joining Baidu, Diamos was in the employ of NVIDIA, first as a research scientist and then an architect (for the GPU streaming multiprocessor and the CUDA software). Given this background, it’s natural that Diamos’ research is focused on advancing breakthroughs in GPU-based deep learning. Ahead of the paper he is presenting, Diamos answered questions about his research and his vision for the future of machine learning.

HPCwire: How would you characterize the current era of machine learning?

Greg Diamos Baidu headshot
Greg Diamos

Diamos: There are two strong forces in machine learning. One is big data, or the availability of massive data sets enabled by the growth of the internet. The other is deep learning, or the discovery of how to train very deep artificial neural networks effectively. The combination of these two forces is driving fast progress on many hard problems.

HPCwire: There’s a lot of excitement for deep learning – is it warranted and what would you say to those who say they aren’t on-board yet?

Diamos: It is warranted. Deep learning has already tremendously advanced the state of the art of real world problems in computer vision and speech recognition. Many problems in these domains and others that were previously considered too difficult are now within reach.

HPCwire: What’s the relationship between machine learning and high-performance computing and how is it evolving?

Diamos: The ability to train deep artificial neural networks effectively and the abundance of training data has pushed machine learning into a compute bound regime, even on the fastest machines in the world. We find ourselves in a situation where faster computers directly enable better application level performance, for example, better speech recognition accuracy.

HPCwire: So you’re presenting a paper at the 33rd International Conference on Machine Learning in New York today. The title is Persistent RNNs: Stashing Recurrent Weights On-Chip. First, can you explain what Recurrent Neural Networks are and what problems they solve?

Diamos: Recurrent neural networks are functions that transform sequences of data – for example, they can transform an audio signal into a transcript, or a sentence in English into a sentence in Chinese. They are similar to other deep artificial neural networks, with the key difference being that they operate on sequences (e.g. an audio signal of arbitrary length) instead of fixed sized data (e.g. an image of fixed dimensions).

Figure 5 Baidu Diamos ICML 2016HPCwire: Can you provide an overview of your paper? What problem(s) did you set out to solve and what was achieved?

Diamos: It turns out that although deep learning algorithms are typically compute bound, we have not figured out how to train them at the theoretical limits of performance of large clusters, and there is a big opportunity remaining. The difference between the sustained performance of the fastest RNN training system that we know about at Baidu, and the theoretical peak performance of the fastest computer in the world is approximately 2500x.

The goal of this work is to improve the strong scalability of training deep recurrent neural networks in an attempt to close this gap. We do this by making GPUs 30x more efficient on smaller units of work, enabling better strong scaling. We achieve a 16x increase in strong scaling, going from 8 GPUs without our technique to 128 GPUs with it. Our implementation sustains 28 percent of peak floating point throughput at 128 GPUs over the entire training run, compared to 31 percent on a single GPU.

HPCwire: GPUs are closely associated with machine learning, especially deep neural networks. How important have GPUs been to your research and development at Baidu?

Diamos: GPUs are important for machine learning because they have high computational throughput, and much of machine learning, deep learning in particular, is compute limited.

HPCwire: And a related question – what does the scalability offered by dense servers all the way up to large clusters enable for deep learning and other machine learning workloads?

Diamos: Scaling training to large clusters enables training bigger neural networks on bigger datasets than are possible with any other technology.

HPCwire: What are you watching in terms of other processing architecture (Xeon Phi Knights Landing, FPGAs, ASICs, DSPs, ARM and so forth)?

Diamos: In the five year timeframe I am watching two things: peak floating point throughput and software support for deep learning. So far GPUs are leading both categories, but there is certainly room for competition. If other processors want to compete in this space, they need to be serious about software, in particular, releasing deep learning primitive libraries with simple C interfaces that achieve close to peak performance. Looking farther ahead to the limits of technology scaling, I hope that a processor is developed in the next two decades that enables deep learning model training at 10 PFLOP/s in 300 Watts, and 150 EFLOP/s in 25 MWatts.

HPCwire: Baidu is using machine learning for image recognition, speech recognition, the development of autonomous vehicles and more, what does the research you’ve done here help enable?

Diamos: This research allows us to train our models faster, which so far has translated into better application level performance, e.g. speech recognition accuracy. I think that this is an important message for people who work in high performance computing systems. It provides a clear link between the work that they do to build faster systems and our ability to apply machine learning to important problems.

Relevant links:

ICML paper: Persistent RNNs: Stashing Recurrent Weights On-Chip: http://jmlr.org/proceedings/papers/v48/diamos16.pdf

Video about Greg’s work at Baidu: https://www.youtube.com/watch?v=JkXbTOt_JxE

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This