Baidu Researcher Pushes GPU Scalability for Deep Learning

By Tiffany Trader

June 20, 2016

Editor’s Note: While Andrew Ng, chief scientist at Baidu was delivering his ISC keynote this morning on how HPC is supercharging AI, his colleague Greg Diamos, research scientist at Baidu’s Silicon Valley AI Lab, was preparing to present a paper on GPU-based deep learning at the 33rd International Conference on Machine Learning in New York.

Greg Diamos, senior researcher, Silicon Valley AI Lab, Baidu, is on the front lines of the reinvigorated frontier of machine learning. Before joining Baidu, Diamos was in the employ of NVIDIA, first as a research scientist and then an architect (for the GPU streaming multiprocessor and the CUDA software). Given this background, it’s natural that Diamos’ research is focused on advancing breakthroughs in GPU-based deep learning. Ahead of the paper he is presenting, Diamos answered questions about his research and his vision for the future of machine learning.

HPCwire: How would you characterize the current era of machine learning?

Greg Diamos Baidu headshot
Greg Diamos

Diamos: There are two strong forces in machine learning. One is big data, or the availability of massive data sets enabled by the growth of the internet. The other is deep learning, or the discovery of how to train very deep artificial neural networks effectively. The combination of these two forces is driving fast progress on many hard problems.

HPCwire: There’s a lot of excitement for deep learning – is it warranted and what would you say to those who say they aren’t on-board yet?

Diamos: It is warranted. Deep learning has already tremendously advanced the state of the art of real world problems in computer vision and speech recognition. Many problems in these domains and others that were previously considered too difficult are now within reach.

HPCwire: What’s the relationship between machine learning and high-performance computing and how is it evolving?

Diamos: The ability to train deep artificial neural networks effectively and the abundance of training data has pushed machine learning into a compute bound regime, even on the fastest machines in the world. We find ourselves in a situation where faster computers directly enable better application level performance, for example, better speech recognition accuracy.

HPCwire: So you’re presenting a paper at the 33rd International Conference on Machine Learning in New York today. The title is Persistent RNNs: Stashing Recurrent Weights On-Chip. First, can you explain what Recurrent Neural Networks are and what problems they solve?

Diamos: Recurrent neural networks are functions that transform sequences of data – for example, they can transform an audio signal into a transcript, or a sentence in English into a sentence in Chinese. They are similar to other deep artificial neural networks, with the key difference being that they operate on sequences (e.g. an audio signal of arbitrary length) instead of fixed sized data (e.g. an image of fixed dimensions).

Figure 5 Baidu Diamos ICML 2016HPCwire: Can you provide an overview of your paper? What problem(s) did you set out to solve and what was achieved?

Diamos: It turns out that although deep learning algorithms are typically compute bound, we have not figured out how to train them at the theoretical limits of performance of large clusters, and there is a big opportunity remaining. The difference between the sustained performance of the fastest RNN training system that we know about at Baidu, and the theoretical peak performance of the fastest computer in the world is approximately 2500x.

The goal of this work is to improve the strong scalability of training deep recurrent neural networks in an attempt to close this gap. We do this by making GPUs 30x more efficient on smaller units of work, enabling better strong scaling. We achieve a 16x increase in strong scaling, going from 8 GPUs without our technique to 128 GPUs with it. Our implementation sustains 28 percent of peak floating point throughput at 128 GPUs over the entire training run, compared to 31 percent on a single GPU.

HPCwire: GPUs are closely associated with machine learning, especially deep neural networks. How important have GPUs been to your research and development at Baidu?

Diamos: GPUs are important for machine learning because they have high computational throughput, and much of machine learning, deep learning in particular, is compute limited.

HPCwire: And a related question – what does the scalability offered by dense servers all the way up to large clusters enable for deep learning and other machine learning workloads?

Diamos: Scaling training to large clusters enables training bigger neural networks on bigger datasets than are possible with any other technology.

HPCwire: What are you watching in terms of other processing architecture (Xeon Phi Knights Landing, FPGAs, ASICs, DSPs, ARM and so forth)?

Diamos: In the five year timeframe I am watching two things: peak floating point throughput and software support for deep learning. So far GPUs are leading both categories, but there is certainly room for competition. If other processors want to compete in this space, they need to be serious about software, in particular, releasing deep learning primitive libraries with simple C interfaces that achieve close to peak performance. Looking farther ahead to the limits of technology scaling, I hope that a processor is developed in the next two decades that enables deep learning model training at 10 PFLOP/s in 300 Watts, and 150 EFLOP/s in 25 MWatts.

HPCwire: Baidu is using machine learning for image recognition, speech recognition, the development of autonomous vehicles and more, what does the research you’ve done here help enable?

Diamos: This research allows us to train our models faster, which so far has translated into better application level performance, e.g. speech recognition accuracy. I think that this is an important message for people who work in high performance computing systems. It provides a clear link between the work that they do to build faster systems and our ability to apply machine learning to important problems.

Relevant links:

ICML paper: Persistent RNNs: Stashing Recurrent Weights On-Chip: http://jmlr.org/proceedings/papers/v48/diamos16.pdf

Video about Greg’s work at Baidu: https://www.youtube.com/watch?v=JkXbTOt_JxE

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance computing and the advanced-scale AI market. Early customers Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerated for AI applications. Now, Amazon Web Services (AWS) is int Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testbed (AQT), which is based at Lawrence Berkeley National Labor Read more…

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

After launching its second-generation intelligence processing units (IPUs) in 2020, four years after emerging from stealth, Graphcore is now boosting its product line with its largest commercially-available IPU-based sys Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 577238446

Putting bitrates into perspective

Recently, we talked about the advances NICE DCV has made to push pixels from cloud-hosted desktops or applications over the internet even more efficiently than before. Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerate Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testb Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire