Intel Launches ‘Knights Landing’ Phi Family for HPC, Machine Learning

By Tiffany Trader

June 21, 2016

From ISC 2016 in Frankfurt, Germany, this week, Intel Corp. launched the second-generation Xeon Phi product family, formerly code-named Knights Landing, aimed at HPC and machine learning workloads. The company had been shipping “Knights Landing” silicon to early customers for the last six months and was waiting to ramp up production before making the product generally available.

The window also gave OEMs time to complete their readiness, said Intel’s Charlie Wuischpard, vice president of the Data Center Group and general manager of High Performance Computing Platform Group, in a media pre-briefing. Those OEMs include the usual names: Cray, HPE, Lenovo, Dell and others.

The most distinguishing feature of the chip is that it’s a bootable host CPU — unlike its predecessor “Knights Corner,” which is a coprocessor that connects over PCIe. “We’re not just a specialized programming model,” said Intel’s General Manager, HPC Compute and Networking, Barry Davis in a hand-on technical demo held at ISC. “We’re the full IA programming model. There’s no PCIe bottleneck; there’s a limitation in the data that you can send back and forth from the host CPU to the accelerator or coprocessor and we removed that bottleneck.”

The “Knights Landing” Phi will be the first chip to offer an integrated fabric, Intel’s Omni-Path Architecture (OPA), in the package. “Knights Landing” also puts integrated on-package memory in a processor, which benefits memory bandwidth and overall application performance. A six-channel memory controller supports up to 384 GB of DDR4-2400 memory (~90GB/s sustained bandwidth). There are 36 PCI Express 3.0 lanes for connecting to PCIe coprocessors, PCIe SSDs or discrete graphics cards.

The second-generation Phi is based on an Intel Atom core (based on the Silvermont microarchitecture) with many HPC enhancements. The MIC (Many Integrated Cores) design fits 8 billion transistors on a die, using 14 nm process technology. The new Phi family introduces the AVX-512 instruction set, which will be available on future Xeon processors. Both the Phi and the Xeon are binary compatible and a benefit of this is that the optimizations that apply to one platform typically carry to the other, notes Intel.

Intel emphasizes that the Phi is designed to run any workload, any IA code. “There are workloads out there that are single thread that maybe benefit from higher frequency and fewer cores and of course you would run those on a Xeon but it doesn’t mean those applications won’t still run on a Xeon Phi,” said Wuischpard. “Some of our early customers are implementing an entire supercomputing cluster with Xeon Phi. Others are doing a mix of Xeon and Xeon Phi and there are a lot of configurations that are possible within a given system deployment.”

As previously announced, the Phi product family comes in three variants: a PCIe coprocessor form factor; a stand-alone CPU; and a stand-alone CPU with integrated Omni-Path fabric technology. The SKU stack that Intel is launching includes four parts with different core counts, frequencies, TDPs and price points.

There are three parts shipping now: the 68-core 7250 (1.4 Ghz), the 64-core 7230 (1.3 Ghz) and the 64-core 7210 (1.3 Ghz). The TDP on all of these is 215 watts. The top-bin part – the Xeon Phi 7290 – is the promised 72-core version. The $6,250 SKU runs at 1.5 Ghz and consumes 245 watts of power; it will not be available until September. Integrated fabric versions of all four parts will not be available until October. Powering the fabric will add another 15 watts to the TDP envelope. The coprocessor card will be available in the second half the year, according to Intel.

Intel KNL Phi SKU list

“You can think of it as the 7200-series Xeon processor,” said Wuischpard, “You’ll see that all of the memory is 16 GBs across the board. We had originally talked about having a richer matrix of SKUs that ranged from no in-package memory to 16 GB of memory and then across these ranges of performance and it just looked too busy and too complex, and in the end everyone wants that in-package memory so we decided to shrink the SKU stack and make it easier to understand. And it does make it easier from a manufacturing perspective.”

The Xeon 7290 is a premium product with a premium price. This is by design since it’s relatively low-yielding, according to Intel. “Most of our early customers and this includes the large research labs and institutions have really focused on the 7230 and the 7250 to get the best price/performance. And we expect the 7210 will be the more general purpose high-running part,” said Wuishpard, adding that it offers 85-90 percent of the performance at less than half the price of the top-end part.

The self-hosted Phi processor competes directly with Tesla GPUs from Nvidia with both products targeting HPC and machine learning and visualization. At its GTC16 event, NVIDIA announced the NVLink-based Pascal GPU. The NVLink point-to-point interconnect’s advantage is enabling data sharing at rates five to 12 times faster than traditional PCI Express Gen 3.0. Currently, the NVLink-based P100 is only available to customers who shell out the $129,000 for NVIDIA’s “deep learning supercomputer,” the DGX-1, but the standalone NVLink-based P100 is expected to hit production availability early 2017.

Intel talks about scalability as being a big difference between a GPU card and Xeon Phi. “With GPU cards, you can only put so many cards in a box,” says Intel’s Barry Davis. “Even with NV-LINK to connect those together, you are still limited in that scale. As you look at the Xeon Phi product line with implementations at thousands of nodes, scalability is a key part of this architecture, and that’s what the market needs today, whether you are talking about machine learning, deep learning or traditional modeling and simulation.”

When it comes to artificial intelligence and deep learning, Intel has published several initial benchmarks claiming performance improvements over GPUs on a number of machine learning workloads.

Intel KNL Phi deep learning-1400x

NVIDIA’s VP, Solutions Architecture and Engineering, Marc Hamilton, said he questions the benchmarks that Intel has released so far, noting that the claims relating to deep learning were done against older versions of GPUs (Kepler) using unoptimized versions of frameworks. [The benchmark breakdown was unavailable on Intel’s site as of press time.] Hamilton also said that the “Knights Landing” does not have the strong node capability of the GPU. NVIDIA GPUs currently scale to 8-way configurations, but the OS will support 16 (recall the K80 has two physical GPUs inside it and the OS will support 8 of these).

There’s also a performance difference between the second-generation Phi and the newest Tesla GPUs. The top bin Knights Landing Phi CPU delivers 3.46 teraflops of double-precision floating point performance. The Pascal P100 GPU for NVLink-optimized servers offers 5.3 teraflops of double-precision floating point performance, and the PCIe version supports 4.7 teraflops of double-precision.

One early customer who has already deployed a Knights Landing Phi-based system is the Texas Advanced Computing Center (TACC) at the University of Austin at Texas. TACC got the 508 node system – an interim step between Stampede 1 and Stampede 2 – up and running and benchmarked on LINPACK three days after receiving its racks.

TACC Director Dan Stanzione wryly commented that that is not his preferred timeframe, but the result was a 117th place ranking on the latest TOP500 with a LINPACK of 817.8 teraflops. “Obviously the software came up pretty quickly in order to make that happen,” said Stanzione.

“We finished all of our benchmarking,” he continued, “and we’re putting users on it this week and are running our first tutorial on Sunday here at ISC.” The system employs the top-bin-minus-1 68-core Xeon Phi 7250 processor and the Omni-Path fabric.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first half of 2019. The new machine is intended to replace the eig Read more…

By John Russell

What’s New in HPC Research: October (Part 2)

October 15, 2018

In this bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back on the firs Read more…

By Oliver Peckham

Building a Diverse Workforce for Next-Generation Analytics and AI

October 15, 2018

High-performance computing (HPC) has a well-known diversity problem, and groups such as Women in HPC are working to address it. But while the diversity challenge crosses the science and technology spectrum, it is especia Read more…

By Jan Rowell

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas monster, which would be a first, but at a spec'd 250 single-pre Read more…

By Tiffany Trader

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

DDN, Nvidia Blueprint Unified AI Appliance with Up to 9 DGX-1s

October 4, 2018

Continuing the roll-out of the A3I (Accelerated, Any-Scale AI) storage strategy kicked off in June, DDN today announced a new set of solutions that combine the Read more…

By Tiffany Trader

D-Wave Is Latest to Offer Quantum Cloud Platform

October 4, 2018

D-Wave Systems today launched its cloud platform for quantum computing – Leap – which combines a development environment, community features, and "real-time Read more…

By John Russell

Rise of the Machines – Clarion Call on AI by U.S. House Subcommittee

October 2, 2018

Last week, the top U.S. House of Representatives subcommittee on IT weighed in on AI with a new report - Rise of the Machines: Artificial Intelligence and its Growing Impact on U.S. Policy. Read more…

By John Russell

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist


Dell EMC





D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This