Intel Launches ‘Knights Landing’ Phi Family for HPC, Machine Learning

By Tiffany Trader

June 21, 2016

From ISC 2016 in Frankfurt, Germany, this week, Intel Corp. launched the second-generation Xeon Phi product family, formerly code-named Knights Landing, aimed at HPC and machine learning workloads. The company had been shipping “Knights Landing” silicon to early customers for the last six months and was waiting to ramp up production before making the product generally available.

The window also gave OEMs time to complete their readiness, said Intel’s Charlie Wuischpard, vice president of the Data Center Group and general manager of High Performance Computing Platform Group, in a media pre-briefing. Those OEMs include the usual names: Cray, HPE, Lenovo, Dell and others.

The most distinguishing feature of the chip is that it’s a bootable host CPU — unlike its predecessor “Knights Corner,” which is a coprocessor that connects over PCIe. “We’re not just a specialized programming model,” said Intel’s General Manager, HPC Compute and Networking, Barry Davis in a hand-on technical demo held at ISC. “We’re the full IA programming model. There’s no PCIe bottleneck; there’s a limitation in the data that you can send back and forth from the host CPU to the accelerator or coprocessor and we removed that bottleneck.”

The “Knights Landing” Phi will be the first chip to offer an integrated fabric, Intel’s Omni-Path Architecture (OPA), in the package. “Knights Landing” also puts integrated on-package memory in a processor, which benefits memory bandwidth and overall application performance. A six-channel memory controller supports up to 384 GB of DDR4-2400 memory (~90GB/s sustained bandwidth). There are 36 PCI Express 3.0 lanes for connecting to PCIe coprocessors, PCIe SSDs or discrete graphics cards.

The second-generation Phi is based on an Intel Atom core (based on the Silvermont microarchitecture) with many HPC enhancements. The MIC (Many Integrated Cores) design fits 8 billion transistors on a die, using 14 nm process technology. The new Phi family introduces the AVX-512 instruction set, which will be available on future Xeon processors. Both the Phi and the Xeon are binary compatible and a benefit of this is that the optimizations that apply to one platform typically carry to the other, notes Intel.

Intel emphasizes that the Phi is designed to run any workload, any IA code. “There are workloads out there that are single thread that maybe benefit from higher frequency and fewer cores and of course you would run those on a Xeon but it doesn’t mean those applications won’t still run on a Xeon Phi,” said Wuischpard. “Some of our early customers are implementing an entire supercomputing cluster with Xeon Phi. Others are doing a mix of Xeon and Xeon Phi and there are a lot of configurations that are possible within a given system deployment.”

As previously announced, the Phi product family comes in three variants: a PCIe coprocessor form factor; a stand-alone CPU; and a stand-alone CPU with integrated Omni-Path fabric technology. The SKU stack that Intel is launching includes four parts with different core counts, frequencies, TDPs and price points.

There are three parts shipping now: the 68-core 7250 (1.4 Ghz), the 64-core 7230 (1.3 Ghz) and the 64-core 7210 (1.3 Ghz). The TDP on all of these is 215 watts. The top-bin part – the Xeon Phi 7290 – is the promised 72-core version. The $6,250 SKU runs at 1.5 Ghz and consumes 245 watts of power; it will not be available until September. Integrated fabric versions of all four parts will not be available until October. Powering the fabric will add another 15 watts to the TDP envelope. The coprocessor card will be available in the second half the year, according to Intel.

Intel KNL Phi SKU list

“You can think of it as the 7200-series Xeon processor,” said Wuischpard, “You’ll see that all of the memory is 16 GBs across the board. We had originally talked about having a richer matrix of SKUs that ranged from no in-package memory to 16 GB of memory and then across these ranges of performance and it just looked too busy and too complex, and in the end everyone wants that in-package memory so we decided to shrink the SKU stack and make it easier to understand. And it does make it easier from a manufacturing perspective.”

The Xeon 7290 is a premium product with a premium price. This is by design since it’s relatively low-yielding, according to Intel. “Most of our early customers and this includes the large research labs and institutions have really focused on the 7230 and the 7250 to get the best price/performance. And we expect the 7210 will be the more general purpose high-running part,” said Wuishpard, adding that it offers 85-90 percent of the performance at less than half the price of the top-end part.

The self-hosted Phi processor competes directly with Tesla GPUs from Nvidia with both products targeting HPC and machine learning and visualization. At its GTC16 event, NVIDIA announced the NVLink-based Pascal GPU. The NVLink point-to-point interconnect’s advantage is enabling data sharing at rates five to 12 times faster than traditional PCI Express Gen 3.0. Currently, the NVLink-based P100 is only available to customers who shell out the $129,000 for NVIDIA’s “deep learning supercomputer,” the DGX-1, but the standalone NVLink-based P100 is expected to hit production availability early 2017.

Intel talks about scalability as being a big difference between a GPU card and Xeon Phi. “With GPU cards, you can only put so many cards in a box,” says Intel’s Barry Davis. “Even with NV-LINK to connect those together, you are still limited in that scale. As you look at the Xeon Phi product line with implementations at thousands of nodes, scalability is a key part of this architecture, and that’s what the market needs today, whether you are talking about machine learning, deep learning or traditional modeling and simulation.”

When it comes to artificial intelligence and deep learning, Intel has published several initial benchmarks claiming performance improvements over GPUs on a number of machine learning workloads.

Intel KNL Phi deep learning-1400x

NVIDIA’s VP, Solutions Architecture and Engineering, Marc Hamilton, said he questions the benchmarks that Intel has released so far, noting that the claims relating to deep learning were done against older versions of GPUs (Kepler) using unoptimized versions of frameworks. [The benchmark breakdown was unavailable on Intel’s site as of press time.] Hamilton also said that the “Knights Landing” does not have the strong node capability of the GPU. NVIDIA GPUs currently scale to 8-way configurations, but the OS will support 16 (recall the K80 has two physical GPUs inside it and the OS will support 8 of these).

There’s also a performance difference between the second-generation Phi and the newest Tesla GPUs. The top bin Knights Landing Phi CPU delivers 3.46 teraflops of double-precision floating point performance. The Pascal P100 GPU for NVLink-optimized servers offers 5.3 teraflops of double-precision floating point performance, and the PCIe version supports 4.7 teraflops of double-precision.

One early customer who has already deployed a Knights Landing Phi-based system is the Texas Advanced Computing Center (TACC) at the University of Austin at Texas. TACC got the 508 node system – an interim step between Stampede 1 and Stampede 2 – up and running and benchmarked on LINPACK three days after receiving its racks.

TACC Director Dan Stanzione wryly commented that that is not his preferred timeframe, but the result was a 117th place ranking on the latest TOP500 with a LINPACK of 817.8 teraflops. “Obviously the software came up pretty quickly in order to make that happen,” said Stanzione.

“We finished all of our benchmarking,” he continued, “and we’re putting users on it this week and are running our first tutorial on Sunday here at ISC.” The system employs the top-bin-minus-1 68-core Xeon Phi 7250 processor and the Omni-Path fabric.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This