Profile of a Data Science Pioneer

By Karen Green, RENCI

June 28, 2016

As he approaches retirement, Reagan Moore reflects on SRB, iRODS, and the ongoing challenge of helping scientists manage their data.

In 1994, Reagan Moore managed the production computing systems at the San Diego Supercomputer Center (SDSC), a job that entailed running and maintaining huge Cray computing systems as well as networking, archival storage, security, job scheduling, and visualization systems.

At the time, research was evolving from analyses done by individuals on single computers into a collaborative activity using distributed, interconnected and heterogeneous resources. With those changes came challenges. As Moore recalls, the software needed to manage data and interactions in a widely distributed environment didn’t exist.

Moore-UGM-1600x
Reagan Moore addresses attendees at the iRODS User Group Meeting, held June 8 and 9 in Chapel Hill, NC.

“The systems at that time were things like AFS (Andrew File System), but it had major restrictions,” said Moore. AFS was implemented as modifications to the operating system kernel. To implement AFS for the National Science Foundation’s National Partnership for Advanced Computational Infrastructure (NPACI) program, which SDSC managed in the 1990s, required partitioning of user IDs to reserve IDs for each NPACI site.

“Every time you updated a site’s kernel you had to reinstall the AFS mods and preserve the user IDs,” Moore recalled. “With sites that used different operating systems, this became difficult.”

Moore saw the technical challenges as an opportunity for research in distributed data management. He secured funding from the Defense Advanced Research Projects Agency (DARPA), and with a team of talented visionaries and software developers created the Storage Resource Broker (SRB).

From SRB to iRODS

Over time, SRB evolved into iRODS, the integrated Rule Oriented Data System and Moore, now a professor in the School of Information and Library Science (SILS) at the University of North Carolina at Chapel Hill and a data scientist at UNC’s Renaissance Computing Institute (RENCI), stands on the brink of retirement. iRODS, the middleware platform that started as the SRB, now boasts more than 20,000 end users spanning six continents and manages more than 100 petabytes of data. The iRODS Consortium, established in 2014 to sustain the continued development of iRODS, now includes 17 members as well as four partner organizations that help with iRODS deployments and support services.

It’s a software and enabling science success story that developed over two decades and involved much hard work as well as an aggressive goal.

Moore-Ahalt-1600x
Reagan Moore, left, with RENCI Director Stan Ahalt after receiving recognition for long and successful career at the recent iRODS User Group meeting in Chapel Hill, NC.

“Reagan is a visionary,” said Arcot Rajasekar, who started working with Moore in the mid 1990s and made the move from SDSC to UNC-Chapel Hill with him in 2008. “He was talking about massive data analysis and data intensive computing a full 15 years before the phrase ‘big data’ was coined. These days the word ‘policy’ in data management, curation, sharing and analysis is becoming mainstream. But Reagan was talking about it a long while back.”

Rajasekar, also a professor in UNC’s SILS and a RENCI data scientist, was a key member of the original Data Intensive Computing Environments (DICE) research group, the team established to develop the SRB. Other members were system architect Mike Wan, principle developer Wayne Schroeder, and technical manager Chaitan Baru. Over 20 years, the DICE group landed 34 research grants.

“The way we approached the problem was through a very large number of collaborations instead of one large project,” Moore remembers. “The research communities provided the requirements; we took their requirements and translated them into generic data management infrastructure.”

Toward rule-oriented data management

Moore gives credit to Rajasekar for inventing the idea of rule-oriented data management. iRODS developed because SRB users wanted to enforce different constraints for different data collections while using a common infrastructure. Moore remembers working with the data group of the UK’s e-Science Program and learning they needed to guarantee files could not be deleted from one data collection. For another collection, they wanted the system administrator to be able to delete and replace bad data, and for a third, they required the collection owner to be able to delete and add data at will.

“What Rajasekar did was to extract the policy that controls the deletion operation from the software and put the rule in a rule base,” said Moore. “Then we could make rules appropriate to each collection.”

That was the birth of policy-based data management, which allows users to define their own policies and procedures for enforcing management decisions, automating administrative tasks, and validating assessment criteria. As Moore says, “There are three reasons people go to policy-based data management. One is that there are management decisions they need to enforce properly. Another is they are dealing with distributed data at multiple administrative domains on multiple types of software systems. A third is that the collection has grown so large it can no longer be managed at a single site.”

Tenacity and dedication to his craft are traits that Moore’s longtime colleagues know well. According to Baru, now senior advisor for data science in the National Science Foundation’s Computer and Information Science and Engineering (CISE) directorate, Moore sees his job as a mission.

“We used to say that he loved his work and travel so much that he used his airline mileage credits for even more business travel,” said Baru. “He was also the master of stretching the travel dollar. He introduced me to that specific parking lot down Pacific Coast Highway in San Diego that had the cheapest daily rate. To this day, I think of that as ‘Reagan’s lot.’”

The Future: Virtualized Data Flows and SDN

With retirement just around the corner, Moore, always humble and soft spoken, acknowledges his role in changing research from a cottage industry into an endeavor focused on distributed, often large-scale collaborative projects.

“We started out trying to virtualize properties of collections. Most of the world wanted to virtualize storage; we wanted to virtualize the data you were putting into the storage so you could manage collection properties independently of the choice of storage technology,” he said.

Moore-Coposky-1600x
Reagan Moore, left, is congratulated for his years of service by Jason Coposky, interim executive director of the iRODS Consortium, at the annual iRODS User Group Meeting in June. In the background are Helen Tibbo, a professional in the UNC School of Information and Library Science, and Chaitan Baru, senior advisor for data science in the NSF’s CISE directorate.

Next came virtualizing workflows that are executed on compute systems, a process that allows iRODS users to name their workflows, apply access controls, re-execute analyses, track provenance, and generally make it easier for someone else to reapply the same analysis on their own data—all essential capabilities for reproducible research. The next step forward in comprehensive data management, said Moore, is virtualizing data flows.

“I want to be able to describe how data moves across the network, what the sources are, what the destinations are, and apply operations on data in flight,” he said. “That’s what is happening now with the advent of software defined networking. They are putting policies into the network.”

In July 2014, it didn’t seem likely Moore would have the chance to see the future of policy-based data management or even enjoy his retirement. While on a business trip, he suffered massive heart failure. He was resuscitated three times and spent the next six months facing a major challenge: How to stay away from the work he loves and concentrate on rest and recuperation.

“If I were a cat, I’d be on my fourth life, so now seems to be a good time to retire,” he said. Not surprisingly, he has a longstanding hobby to keep him busy. Moore started doing his family genealogy 26 years ago and decided he needed to derive the properties of a complete genealogy in order to know when the project was complete.

“I built a 252,000 person research genealogy, wrote a graph database so I could analyze it, and derived the properties that define when a genealogy is complete. Now I have to start marketing it so other people can take advantage of the results.”

Meanwhile the praises for his contributions to science keep coming in.

“Professor Moore is a visionary pioneer in defining and creating distributed digital library infrastructure,” said Gary Marchionini, Dean and Cary C. Boshamer Professor at the UNC’’s SILS. “He is internationally recognized for his work that makes it possible for data scientists and archivists to instantiate data management policies in code that automates preservation activities. The information science community has been strongly influenced by his work over the past quarter century.”

Added Robert Chadduck of the NSF’s Division of Advanced Cyberinfrastructure, “While I continue to value and be enriched by Reagan’s too-many-to-count contributions to technologies and to scientific advances…I also value his shared contributions to understanding the history and perpetuity of all of us as people as documented in his life contributions to the genealogical record embodying his family.”

And finally, from Wayne Schroeder, the software engineer who worked with Moore in the original DICE group:

“I enjoyed working for Reagan. I liked his fairness, his no-nonsense approach, his can-do attitude, and of course his brilliant mind. He set up an environment where we were free to creatively design and implement software that was both research itself and of practical use to scientific and archival communities.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This