Profile of a Data Science Pioneer

By Karen Green, RENCI

June 28, 2016

As he approaches retirement, Reagan Moore reflects on SRB, iRODS, and the ongoing challenge of helping scientists manage their data.

In 1994, Reagan Moore managed the production computing systems at the San Diego Supercomputer Center (SDSC), a job that entailed running and maintaining huge Cray computing systems as well as networking, archival storage, security, job scheduling, and visualization systems.

At the time, research was evolving from analyses done by individuals on single computers into a collaborative activity using distributed, interconnected and heterogeneous resources. With those changes came challenges. As Moore recalls, the software needed to manage data and interactions in a widely distributed environment didn’t exist.

Moore-UGM-1600x
Reagan Moore addresses attendees at the iRODS User Group Meeting, held June 8 and 9 in Chapel Hill, NC.

“The systems at that time were things like AFS (Andrew File System), but it had major restrictions,” said Moore. AFS was implemented as modifications to the operating system kernel. To implement AFS for the National Science Foundation’s National Partnership for Advanced Computational Infrastructure (NPACI) program, which SDSC managed in the 1990s, required partitioning of user IDs to reserve IDs for each NPACI site.

“Every time you updated a site’s kernel you had to reinstall the AFS mods and preserve the user IDs,” Moore recalled. “With sites that used different operating systems, this became difficult.”

Moore saw the technical challenges as an opportunity for research in distributed data management. He secured funding from the Defense Advanced Research Projects Agency (DARPA), and with a team of talented visionaries and software developers created the Storage Resource Broker (SRB).

From SRB to iRODS

Over time, SRB evolved into iRODS, the integrated Rule Oriented Data System and Moore, now a professor in the School of Information and Library Science (SILS) at the University of North Carolina at Chapel Hill and a data scientist at UNC’s Renaissance Computing Institute (RENCI), stands on the brink of retirement. iRODS, the middleware platform that started as the SRB, now boasts more than 20,000 end users spanning six continents and manages more than 100 petabytes of data. The iRODS Consortium, established in 2014 to sustain the continued development of iRODS, now includes 17 members as well as four partner organizations that help with iRODS deployments and support services.

It’s a software and enabling science success story that developed over two decades and involved much hard work as well as an aggressive goal.

Moore-Ahalt-1600x
Reagan Moore, left, with RENCI Director Stan Ahalt after receiving recognition for long and successful career at the recent iRODS User Group meeting in Chapel Hill, NC.

“Reagan is a visionary,” said Arcot Rajasekar, who started working with Moore in the mid 1990s and made the move from SDSC to UNC-Chapel Hill with him in 2008. “He was talking about massive data analysis and data intensive computing a full 15 years before the phrase ‘big data’ was coined. These days the word ‘policy’ in data management, curation, sharing and analysis is becoming mainstream. But Reagan was talking about it a long while back.”

Rajasekar, also a professor in UNC’s SILS and a RENCI data scientist, was a key member of the original Data Intensive Computing Environments (DICE) research group, the team established to develop the SRB. Other members were system architect Mike Wan, principle developer Wayne Schroeder, and technical manager Chaitan Baru. Over 20 years, the DICE group landed 34 research grants.

“The way we approached the problem was through a very large number of collaborations instead of one large project,” Moore remembers. “The research communities provided the requirements; we took their requirements and translated them into generic data management infrastructure.”

Toward rule-oriented data management

Moore gives credit to Rajasekar for inventing the idea of rule-oriented data management. iRODS developed because SRB users wanted to enforce different constraints for different data collections while using a common infrastructure. Moore remembers working with the data group of the UK’s e-Science Program and learning they needed to guarantee files could not be deleted from one data collection. For another collection, they wanted the system administrator to be able to delete and replace bad data, and for a third, they required the collection owner to be able to delete and add data at will.

“What Rajasekar did was to extract the policy that controls the deletion operation from the software and put the rule in a rule base,” said Moore. “Then we could make rules appropriate to each collection.”

That was the birth of policy-based data management, which allows users to define their own policies and procedures for enforcing management decisions, automating administrative tasks, and validating assessment criteria. As Moore says, “There are three reasons people go to policy-based data management. One is that there are management decisions they need to enforce properly. Another is they are dealing with distributed data at multiple administrative domains on multiple types of software systems. A third is that the collection has grown so large it can no longer be managed at a single site.”

Tenacity and dedication to his craft are traits that Moore’s longtime colleagues know well. According to Baru, now senior advisor for data science in the National Science Foundation’s Computer and Information Science and Engineering (CISE) directorate, Moore sees his job as a mission.

“We used to say that he loved his work and travel so much that he used his airline mileage credits for even more business travel,” said Baru. “He was also the master of stretching the travel dollar. He introduced me to that specific parking lot down Pacific Coast Highway in San Diego that had the cheapest daily rate. To this day, I think of that as ‘Reagan’s lot.’”

The Future: Virtualized Data Flows and SDN

With retirement just around the corner, Moore, always humble and soft spoken, acknowledges his role in changing research from a cottage industry into an endeavor focused on distributed, often large-scale collaborative projects.

“We started out trying to virtualize properties of collections. Most of the world wanted to virtualize storage; we wanted to virtualize the data you were putting into the storage so you could manage collection properties independently of the choice of storage technology,” he said.

Moore-Coposky-1600x
Reagan Moore, left, is congratulated for his years of service by Jason Coposky, interim executive director of the iRODS Consortium, at the annual iRODS User Group Meeting in June. In the background are Helen Tibbo, a professional in the UNC School of Information and Library Science, and Chaitan Baru, senior advisor for data science in the NSF’s CISE directorate.

Next came virtualizing workflows that are executed on compute systems, a process that allows iRODS users to name their workflows, apply access controls, re-execute analyses, track provenance, and generally make it easier for someone else to reapply the same analysis on their own data—all essential capabilities for reproducible research. The next step forward in comprehensive data management, said Moore, is virtualizing data flows.

“I want to be able to describe how data moves across the network, what the sources are, what the destinations are, and apply operations on data in flight,” he said. “That’s what is happening now with the advent of software defined networking. They are putting policies into the network.”

In July 2014, it didn’t seem likely Moore would have the chance to see the future of policy-based data management or even enjoy his retirement. While on a business trip, he suffered massive heart failure. He was resuscitated three times and spent the next six months facing a major challenge: How to stay away from the work he loves and concentrate on rest and recuperation.

“If I were a cat, I’d be on my fourth life, so now seems to be a good time to retire,” he said. Not surprisingly, he has a longstanding hobby to keep him busy. Moore started doing his family genealogy 26 years ago and decided he needed to derive the properties of a complete genealogy in order to know when the project was complete.

“I built a 252,000 person research genealogy, wrote a graph database so I could analyze it, and derived the properties that define when a genealogy is complete. Now I have to start marketing it so other people can take advantage of the results.”

Meanwhile the praises for his contributions to science keep coming in.

“Professor Moore is a visionary pioneer in defining and creating distributed digital library infrastructure,” said Gary Marchionini, Dean and Cary C. Boshamer Professor at the UNC’’s SILS. “He is internationally recognized for his work that makes it possible for data scientists and archivists to instantiate data management policies in code that automates preservation activities. The information science community has been strongly influenced by his work over the past quarter century.”

Added Robert Chadduck of the NSF’s Division of Advanced Cyberinfrastructure, “While I continue to value and be enriched by Reagan’s too-many-to-count contributions to technologies and to scientific advances…I also value his shared contributions to understanding the history and perpetuity of all of us as people as documented in his life contributions to the genealogical record embodying his family.”

And finally, from Wayne Schroeder, the software engineer who worked with Moore in the original DICE group:

“I enjoyed working for Reagan. I liked his fairness, his no-nonsense approach, his can-do attitude, and of course his brilliant mind. He set up an environment where we were free to creatively design and implement software that was both research itself and of practical use to scientific and archival communities.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its next-generation IPU platform: the IPU-Machine M2000. With the n Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic competitiveness, and national security. This has been the mai Read more…

By Jack Dongarra and Stanimire Tomov

There’s No Storage Like ATGC: Breakthrough Helps to Store ‘The Wizard of Oz’ in DNA

July 15, 2020

Even as storage density reaches new heights, many researchers have their eyes set on a paradigm shift in high-density information storage: storing data in the four nucleotides (A, T, G and C) that constitute DNA, a metho Read more…

By Oliver Peckham

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle forward demonstrating an event-driven, visual-tactile perce Read more…

By John Russell

What’s New in HPC Research: Volcanoes, Mobile Games, Proteins & More

July 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

INEOS TEAM UK Accelerates Boat Design for America’s Cup Using HPC on AWS

The America’s Cup Dream

The 36th America’s Cup race will be decided in Auckland, New Zealand in 2021. Like all the teams, INEOS TEAM UK will compete in a boat whose design will have followed guidelines set by race organizers to ensure the crew’s sailing skills are fully tested. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and increase the vehicle’s speed and efficiency. These fluid dyn Read more…

By Oliver Peckham

Graphcore Introduces Next-Gen Intelligence Processing Unit for AI Workloads

July 15, 2020

British hardware designer Graphcore, which emerged from stealth in 2016 to launch its first-generation Intelligence Processing Unit (IPU), has announced its nex Read more…

By Oliver Peckham

heFFTe: Scaling FFT for Exascale

July 15, 2020

Exascale computing aspires to provide breakthrough solutions addressing today’s most critical challenges in scientific discovery, energy assurance, economic c Read more…

By Jack Dongarra and Stanimire Tomov

Get a Grip: Intel Neuromorphic Chip Used to Give Robotics Arm a Sense of Touch

July 15, 2020

Moving neuromorphic technology from the laboratory into practice has proven slow-going. This week, National University of Singapore researchers moved the needle Read more…

By John Russell

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This