RISC-V Startup Aims to Democratize Custom Silicon

By Tiffany Trader

July 13, 2016

Momentum for open source hardware made a significant advance this week with the launch of startup SiFive and its open source chip platforms based on the RISC-V instruction set architecture. The founders of the fabless semiconductor company — Krste Asanovic, Andrew Waterman, and Yunsup Lee — invented the free and open RISC-V ISA at the University of California, Berkeley, six years ago.

The progression of RISC-V and the launch of SiFive opens the door to a new way of chip building that skirts prohibitive licensing costs and lowers the barrier to entry for custom chip design. The traction around RISC-V and other open source hardware efforts like the Facebook-initiated Open Compute Project, and to some extent even the growing diversity in the processor space, which reflects a demand for more openness and choice, may indicate the beginnings of a revolution similar to the one started by Linux on the software side.

Jack Kang, vice president of product and business development, addressed the significance of an open instruction set architecture and this trend toward open hardware.

“The economic demise of Moore’s law can no longer be disputed,” he shared. “The cost per transistor is no longer decreasing. The fixed cost to start a new design continues to rise. Due to these factors, we have seen incredible change in the semiconductor industry. The industry has been set up for the past 30, 40 years based on Moore’s law. How they engineer chips, what products they build, how they work with customers, all of that is based on 30+ years of legacy. Last year, we saw over $100B in mergers & acquisition activity in the semiconductor space, due to these factors and the requirement to look for larger and larger customer volume sockets.”

SiFive slide July 2016

Designing a custom chip can cost tens and even hundreds of millions of dollars, said SiFive Co-founder Yunsup Lee in an official statement. “It is simply impossible for smaller system designers to get a modern, high-performance chip, much less one customized to their unique requirements.”

SiFive sees custom silicon as an opportunity for the markets that are not being adequately served by the traditional semiconductors. The founders want to democratize access to custom silicon beyond the big players to the inventors, makers, startups, and smallest companies. Included here are fragmented or new markets that do not have the volume or revenue required under the conventional proprietary semiconductor approach, Kang said.

Target markets for SiFive span machine learning, storage and networking as well as the fast-growing IoT market with the launch of two platforms:

SiFive Freedom U500 graphic
Freedom U500 platform

The Freedom U500 Series — part of the Freedom Unleashed family — includes a Linux-capable embedded application processor with multicore RISC-V CPUs, running at a speed of 1.6 GHz or higher with support for accelerators and cache coherency. This SoC was manufactured by TSMC on 28nm process and targets the machine learning, storage and networking space. The U500 supports PCIe 3.0, USB 3.0, Gigabit Ethernet, and DDR3/DDR4.

The Freedom E300 Series, the first product in the Freedom Everywhere family, is aimed at the embedded microcontroller, IoT and wearables markets. The 180nm TSMC chip implements small and efficient RISC-V cores with RISC-V compressed instructions, shown to reduce code size by up to 30 percent, according to the company.

In-depth guides for both platforms are available here.

Kang said that he and his colleagues have been witnessing the benefits of the growth of the RISC-V ecosystem. To this point, RISC-V Foundation has more than doubled membership since January. At the last RISC-V workshop in January, there were only 16 member companies, reports Kang, and that roster now includes 40 member companies, including heavyweights Google, Microsoft, IBM, NVIDIA, HP Enterprise, AMD, Qualcomm, Western Digital and Oracle.

SiFive timed its launch to coincide with the 4th RISC-V workshop, happening this week in Boston, where the founders demoed both platforms.

While SiFive is focusing on the embedded and industrial space, the opportunity exists to use RISC-V for other purposes, including server-class silicon. The ISA’s designers sought to ensure that it would support implementation in an ASIC, FPGA or full-custom architecture. Earlier this year at the Stanford HPC Conference, MIT’s Kurt Keville said that RISC-V addresses several of the exascale challenges that were included in the DOE’s oft-cited Exascale report. RISC-V also works well as a teaching tool in academia, said Keville, having a fraction of the instructions of x86 (177 versus roughly 3,000) and about fifth that of ARMv8 (with about 1,000 instructions).

There is even a chapter in the RISC-V ISA manual covering a variant of the RISC-V ISA that supports a flat 128-bit address space, which has promise for future extreme-scale systems.

Here the manual notes:

“At the time of writing, the fastest supercomputer in the world as measured by the Top500 benchmark had over 1 PB of DRAM, and would require over 50 bits of address space if all the DRAM resided in a single address space. Some warehouse-scale computers already contain even larger quantities of DRAM, and new dense solid-state non-volatile memories and fast interconnect technologies might drive a demand for even larger memory spaces. Exascale systems research is targeting 100 PB memory systems, which occupy 57 bits of address space. At historic rates of growth, it is possible that greater than 64 bits of address space might be required before 2030.”

At the time of launch, SiFive has one announced customer, Microsemi Corporation, which is also a partner for its FPGA dev boards. The company’s SoC business unit worked with SiFive to build a complete RISC-V sub-system and tool-chain targeting its low power SmartFusion2 SoC FPGA platform. FPGA Freedom platforms are available now.

“We think the industry needs to change,” Kang reflected. “Open-source hardware has the potential to be the solution this industry needs [and] RISC-V has the benefit of being designed for modern software stacks and modern circuit techniques. It’s simple, modern, and clean.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks.  These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvidia GPUs). Recently, MLCommons introduced the results of i Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever physical processor they want, without making code changes, the Read more…

IBM Quantum Summit Evolves into Developer Conference

October 2, 2024

Instead of its usual quantum summit this year, IBM will hold its first IBM Quantum Developer Conference which the company is calling, “an exclusive, first-of-its-kind.” It’s planned as an in-person conference at th Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed that the company will release Falcon Shores as a GPU. The com Read more…

Texas A&M HPRC at PEARC24: Building the National CI Workforce

October 1, 2024

Texas A&M High-Performance Research Computing (HPRC) significantly contributed to the PEARC24 (Practice & Experience in Advanced Research Computing 2024) conference. Eleven HPRC and ACES’ (Accelerating Computin Read more…

A Q&A with Quantum Systems Accelerator Director Bert de Jong

September 30, 2024

Quantum technologies may still be in development, but these systems are evolving rapidly and existing prototypes are already making a big impact on science and industry. One of the major hubs of quantum R&D is the Q Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks.  These benchmarks have focused on mathematical ML operations and accelerators (e.g., N Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever ph Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

How GPUs Are Embedded in the HPC Landscape

September 23, 2024

Grasping the basics of Graphics Processing Unit (GPU) architecture is crucial for understanding how these powerful processors function, particularly in high-per Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced  export controls on quantum computing technologies as well as new controls for advanced semiconductors and additiv Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire