RISC-V Startup Aims to Democratize Custom Silicon

By Tiffany Trader

July 13, 2016

Momentum for open source hardware made a significant advance this week with the launch of startup SiFive and its open source chip platforms based on the RISC-V instruction set architecture. The founders of the fabless semiconductor company — Krste Asanovic, Andrew Waterman, and Yunsup Lee — invented the free and open RISC-V ISA at the University of California, Berkeley, six years ago.

The progression of RISC-V and the launch of SiFive opens the door to a new way of chip building that skirts prohibitive licensing costs and lowers the barrier to entry for custom chip design. The traction around RISC-V and other open source hardware efforts like the Facebook-initiated Open Compute Project, and to some extent even the growing diversity in the processor space, which reflects a demand for more openness and choice, may indicate the beginnings of a revolution similar to the one started by Linux on the software side.

Jack Kang, vice president of product and business development, addressed the significance of an open instruction set architecture and this trend toward open hardware.

“The economic demise of Moore’s law can no longer be disputed,” he shared. “The cost per transistor is no longer decreasing. The fixed cost to start a new design continues to rise. Due to these factors, we have seen incredible change in the semiconductor industry. The industry has been set up for the past 30, 40 years based on Moore’s law. How they engineer chips, what products they build, how they work with customers, all of that is based on 30+ years of legacy. Last year, we saw over $100B in mergers & acquisition activity in the semiconductor space, due to these factors and the requirement to look for larger and larger customer volume sockets.”

SiFive slide July 2016

Designing a custom chip can cost tens and even hundreds of millions of dollars, said SiFive Co-founder Yunsup Lee in an official statement. “It is simply impossible for smaller system designers to get a modern, high-performance chip, much less one customized to their unique requirements.”

SiFive sees custom silicon as an opportunity for the markets that are not being adequately served by the traditional semiconductors. The founders want to democratize access to custom silicon beyond the big players to the inventors, makers, startups, and smallest companies. Included here are fragmented or new markets that do not have the volume or revenue required under the conventional proprietary semiconductor approach, Kang said.

Target markets for SiFive span machine learning, storage and networking as well as the fast-growing IoT market with the launch of two platforms:

SiFive Freedom U500 graphic
Freedom U500 platform

The Freedom U500 Series — part of the Freedom Unleashed family — includes a Linux-capable embedded application processor with multicore RISC-V CPUs, running at a speed of 1.6 GHz or higher with support for accelerators and cache coherency. This SoC was manufactured by TSMC on 28nm process and targets the machine learning, storage and networking space. The U500 supports PCIe 3.0, USB 3.0, Gigabit Ethernet, and DDR3/DDR4.

The Freedom E300 Series, the first product in the Freedom Everywhere family, is aimed at the embedded microcontroller, IoT and wearables markets. The 180nm TSMC chip implements small and efficient RISC-V cores with RISC-V compressed instructions, shown to reduce code size by up to 30 percent, according to the company.

In-depth guides for both platforms are available here.

Kang said that he and his colleagues have been witnessing the benefits of the growth of the RISC-V ecosystem. To this point, RISC-V Foundation has more than doubled membership since January. At the last RISC-V workshop in January, there were only 16 member companies, reports Kang, and that roster now includes 40 member companies, including heavyweights Google, Microsoft, IBM, NVIDIA, HP Enterprise, AMD, Qualcomm, Western Digital and Oracle.

SiFive timed its launch to coincide with the 4th RISC-V workshop, happening this week in Boston, where the founders demoed both platforms.

While SiFive is focusing on the embedded and industrial space, the opportunity exists to use RISC-V for other purposes, including server-class silicon. The ISA’s designers sought to ensure that it would support implementation in an ASIC, FPGA or full-custom architecture. Earlier this year at the Stanford HPC Conference, MIT’s Kurt Keville said that RISC-V addresses several of the exascale challenges that were included in the DOE’s oft-cited Exascale report. RISC-V also works well as a teaching tool in academia, said Keville, having a fraction of the instructions of x86 (177 versus roughly 3,000) and about fifth that of ARMv8 (with about 1,000 instructions).

There is even a chapter in the RISC-V ISA manual covering the a variant of the RISC-V ISA that supports a flat 128-bit address space, which has promise for future extreme-scale systems.

Here the manual notes:

“At the time of writing, the fastest supercomputer in the world as measured by the Top500 benchmark had over 1 PB of DRAM, and would require over 50 bits of address space if all the DRAM resided in a single address space. Some warehouse-scale computers already contain even larger quantities of DRAM, and new dense solid-state non-volatile memories and fast interconnect technologies might drive a demand for even larger memory spaces. Exascale systems research is targeting 100 PB memory systems, which occupy 57 bits of address space. At historic rates of growth, it is possible that greater than 64 bits of address space might be required before 2030.”

At the time of launch, SiFive has one announced customer, Microsemi Corporation, which is also a partner for its FPGA dev boards. The company’s SoC business unit worked with SiFive to build a complete RISC-V sub-system and tool-chain targeting its low power SmartFusion2 SoC FPGA platform. FPGA Freedom platforms are available now.

“We think the industry needs to change,” Kang reflected. “Open-source hardware has the potential to be the solution this industry needs [and] RISC-V has the benefit of being designed for modern software stacks and modern circuit techniques. It’s simple, modern, and clean.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This