Alternative Supercomputing or How to Misuse a Computer

By Tiffany Trader

July 14, 2016

In 2008, the IBM Roadrunner supercomputer broke the petaflops barrier using the power of the heterogeneous Sony Cell Broadband Engine (BE) processor. A year prior, the Cell BE had already made its way into the consumer market as the engine inside the SonyPlaystation 3. The PS3’s accelerated design, Linux-capability and low price point inspired several organizations, including the United States Air Force Research Laboratory, to build Linux clusters out of the gaming machines. While the 2010 AFRL “Condor” deployment was the largest of these efforts, stringing together 1,760 Sony PlayStation 3 boxes for an estimated 500 teraflops of performance, the PS3 cluster effort begun at the University of Massachusetts Dartmouth in 2007, is likely the longest-running.

Gaurav Khanna, a professor in the physics department at UMass Dartmouth, built his first Cell-based cluster with eight PS3s in 2007. The “PS3 Gravity Grid” was used to perform research grade simulations of black hole systems and was the first cluster to generate published scientific results. With support from Sony, the cluster was later expanded to 16 PS3s. In 2014, the Dartmouth team, under the direction of Khanna, created yet another cluster out of 308 Sony PS3 gaming consoles and a refrigerated shipping container using hardware donated from the AFRL effort. Khanna reports that these PS3s are still being used and are delivering performance and performance-per-watt on par with unaccelerated Xeon boxes. UMass Dartmouth is a net energy producer, which makes using this older silicon more feasible than it otherwise might be. More on this to follow.

gkhanna headshot
Gaurav Khanna

After Sony locked down the PS3 OS in 2010 in response to a hacking incident, much of the enthusiasm for the gaming-based clusters fell by the wayside, but Khanna still champions using low-cost consumer (and now mobile) hardware for scientific computing.

Recently the professor began looking into other technologies in the same spirit of the PlayStation 3, which aside from providing efficient number-crunching had the economics of being a mass-manufactured consumer device with a heavily discounted pricing model. On account of competition with Microsoft, Sony was selling the PS3s for about half what it cost to make them.

“I’m interested in a cheap device that’s mass manufactured that’s reliable and is high-performance,” says Khanna, “And I think that naturally brings you to two things: video gaming cards like NVIDIA GeForce or the AMD Radeons and mobile chips such as ARM.”

Khanna studied the SBC (single board computing) space including the Raspberry Pi for a suitable platform. “While it’s true that the Pis sip power,” he said, “being in the few hundred megaflops range each, you would have to have so many of them with so many power supplies, cables, network cards and switches to get some substantial performance that it’s just not worth the hassle.”

A couple years ago he began experimenting with using AMD Radeon cards to crunch some of his astrophysics codes. With the assistance of students, he had already created OpenCL versions and CUDA versions of his codes, and the Radeon of course supports OpenCL. He reports being impressed by the performance and reliability of the cards. Of the roughly two dozen cards crunching scientific work for the last two years, basically non-stop 24/7, there’s only been two or three that failed, he says. The latest version cards he’s acquired are the Radeon R9 Fury X, which provide 8.6 teraflops of single-precision floating point computing power and 512 GB/s of memory bandwidth for about $460.

Khanna, a theoretical physicist cum computational scientist who studies the internal workings of black holes and uses theory and computer simulations to predict gravitational wave radiation, says it’s his research into understanding black holes that has benefited most from his use of consumer-class silicon.

“I’m very interested in what happens inside a black hole. There has been a fair amount of work on that over the decades, but a lot of questions still remain on what actually happens if you’re inside a black hole and what kind of effects you could expect to observe and expect to feel and whether there’s a singularity event that happens,” says Khanna. “Those are the kind of codes that I mapped onto the PS3 architecture.”

He explains that because his original code was optimized for the Cell, the move to GPUs was straightforward. “The break up [in the code] was similar,” he says. “You’ve got the part that needs the I/O done, the CPU, and you’ve got the parallel part that’s going to be done on the GPU, or the Synergistic Processing Elements (SPEs) in the case of the Cell.”

The codes are well-suited for a FP32-dominant processor although parts do need FP64, so Khanna employs mixed precision. At a one-sixteenth ratio, the AMD R9 Fury X card has only about a half teraflops of spec’d FP64 performance, but Khanna says this is sufficient for his needs.

“From a cost perspective, I think the AMD cards are a no brainer – for under $500, you get a few teraflops of performance on this consumer device – while the high-end NVIDIA Tesla products [specifically targeted at HPC] go for a few thousand each,” he says.

Budget realities are what got Khanna started on the path to misusing compute for science as he puts it. “Theoretical physics is an esoteric science without direct implication on high-priority areas like public health, energy and so forth, so has been an underfunded area,” he says. “We do the most with the resources we have – and that has been a primary driver for pretty much my entire career — to find creative ways to do what we need to do but do it cheaply.”

“I think the main reason why more people haven’t leveraged these AMD Radeon cards for compute is because people are so comfortable with CUDA,” Khanna opines, “but once you have CUDA version it’s not that difficult to develop an OpenCL version. It’s a bit more complex, but if you have a CUDA version I would say you’re most of the way there already. Then there’s also the new tools from AMD that help you switch back and forth.”

UMass Dartmouth Elroy2While he was experimenting with the Radeon gaming boards, Khanna also wanted to implement a cluster with a mobile platform. He was looking for something sufficiently powerful yet energy-efficient with support for either CUDA or OpenCL. “If you keep those constraints in line, you find there are really two nice viable platforms – one is the NVIDIA Tegra, which of course supports CUDA, and the other is ODROID boards, developed by Hardkernel, a South Korean purveyor of open-source hardware. The boards use Samsung processors and an ARM Mali GPU that supports OpenCL.”

Khanna ended up going with the Tegra X1 series SoC from NVIDIA, in part because he had several colleagues whose codes were better suited for the CUDA framework. He was also impressed with a stated peak performance (single-precision) of 512 gigaflops per card.

In May, UMass Dartmouth’s Center for Scientific Computing & Visualization Research (CSCVR) purchased 32 of these cards at roughly a 50 percent discount from NVIDIA. The total performance of the new cluster, dubbed “Elroy,” is a little over 16 teraflops and it draws only 300 watts of power.

“In terms of power efficiency, the spec’d numbers turn out to about 50 gigaflops per watt,” he says, sticking with the FP32 metrics. “If you compare with a traditional cluster, it would be a few gigaflops per watt for a CPU-only architecture. A cluster with GPUs consumes about 10-15 gigaflops per watt. So we’re talking up to five times more performance-per-watt than your typical GPU-accelerated computer, which is what I was hoping for. In mobile devices, people want longer battery life so a lot of innovation is going into performance-per-watt.”

At this time, Khanna has his codes up and running on Elroy and has completed some benchmarking studies, which he and a colleague detail in their new paper, Scientific Computing Using Consumer Video Gaming Hardware Devices. (The paper has yet to be published but a pre-print copy is available here.)

The move to the Tegra-X1 platform was an easier transition than the Cell, reports Khanna, because, well, Fortran. “Even though the Cell could run Fortran, and you could use Fortran to run the code on the accelerator cores, there was no bridging possibility,” he explains. “To bring the communication between the two, you had to go to C. So I actually had to write this fairly funky C-based bridge code just to be able to have the two devices communicate in flight. It was ugly.”

“A student that was working on the GPU port rewrote the entire code in C,” he says. “So now we’ve had for a few years a C/C++ code that works much better than this old Fortran code bridged with C, which was kind of a mess.”

Although he’s very pleased with the performance and energy-efficiency metrics of the Tegra-based “Elroy,” Khanna doesn’t think the mobile device experiment, as he refers to it, was that advantageous from a cost perspective. Although he received a nice discount, the boards have a full sticker price of around $600 each while the ODROID boards are $60 and offer about one-fifth the FP32 performance, so potentially a 2X performance per dollar savings. Of course, peak floating point performance does not tell the whole story, but Khanna is optimistic about the ODROID prospects.

“I think if we had done the ODROIDs instead, that would have been more attractive from a cost perspective, and in fact I think we are going to build a cluster with those ODROID Samsung boards as well for comparison’s sake,” he shares.

Khanna maintains that with the right components he can achieve a factor of five or better on performance per watt and performance per dollar over more traditional server silicon. “All we’re doing is misusing these platforms to do constructive science,” he says.

Free Power, Free Space

One reason Khanna has been able to hold on to older architectures rather than having to rip and replace is due to the rather unique power and datacenter situation at UMass Dartmouth. Being on the south coast of Massachusetts, UMass Dartmouth benefits from ample wind power and a natural gas co-generation facility. The campus recently became power sufficient but cannot sell power back to the grid – which means it actually generates an excess of power.

“So power actually is free on our campus and we are lucky in that way,” Khanna acknowledges. “Cooling ties into that equation as well since there is sufficient energy for the task.”

As for space, virtualization has freed up the IT footprint in the datacenter. It used to occupy an entire datacenter, but now the university’s student services now runs off a very small virtual cluster. “Our datacenter has slowly transformed itself into a research computing datacenter and that’s where all my hardware goes,” adds Khanna. “As they free up space, I get a chance to access it.”

The Power of Experimentation

A constrained budget wasn’t the only thing motivating Khanna to pursue alternative supercomputing platforms; he was also driven by a strong belief in the benefits of local compute resources. He says that the original PS3 cluster effort took place at a time when Teragrid (the precursor to XSEDE) was experiencing large fluctuations in terms of supply and demand. “Demand was far outpacing supply at the time,” he reports. “When you did have time, and you submitted a job, there were long wait times. It was getting to the point that jobs took longer in the queue than they took to run and that’s not a productive way to function – you want those times to at least be comparable if not have the queue time be less. I started to think about what is the best way to build my own cluster locally, cheaply.”

The situation improved when the NSF built Blue Waters and added additional systems to the XSEDE infrastructure. It was the GPU-heavy Keeneland project clusters at Georgia Tech that Khanna got the most mileage from. When those systems were retired in April 2015 after 5.5 years of service, Khanna was motivated to start searching for a cheap GPU or mobile board that would satisfy his need for cheap accelerated local compute.

Says Khanna, “The reliance on something like federal supercomputing sites is not a great way – at least in my experience – to be productive in the long run because it varies so much based on what’s available and what the demand is. It’s good to have local resources and that’s one of the drivers for me doing this here is to have independent resources. That has enabled me and my colleagues and me to do things we really couldn’t do before.”

It would take months to run certain models on the shared systems, according to Khanna, including wait times, and now they can do them in an hour or even a few minutes on local resources. He adds that it’s also very useful for the students to have a local machine because it encourages experimentation and skill development.

“One thing that I feel really painful about the shared federal sites is you get some time – and because your time is so budgeted – there is a disincentive to try different things, to experiment. Plus typically you don’t get what you ask for, you get usually half or three-fourths of what you wanted. You never want to be in a position in your research to not be able to just mess around. I want to see what happens if I just tweak different parameters. If you get to the point where you start thinking ‘is this run worth submitting,’ that’s where I think scientific productivity goes down,” he says.

“Often times you make discoveries in science when you have made a mistake or you were just for the sake of trying something, something bizarre and you learn something from that. Or your code crashes and you make mistakes and you learn something interesting from the forensics. If you are constantly worrying about is this going to cost me, is this worth the submission, am I going to lose too much supercomputing time for this job – I think is a detriment to doing good science. That’s where I feel that our local experimental clusters are hugely useful.

“For production level applications and code, when you’ve got something running and you want to run a thousand cases, I think it’s perfectly fine to use supercomputing time at a larger facility, but you don’t have the luxury there to just mess around and that’s where I think a lot of real science happens.”

Khanna takes the same issue with the cloud model, which has the added barrier of a pay wall. “While it’s great for production research, I feel that is discouraging for science,” he says.

The physics professor says he’s witnessed a shift toward more of a business model of accountability with shared resources and the cloud being increasingly viewed by funding bodies as a way to manage flat budgets. Khanna is doing what he can to buck this trend. “Of course all campuses are budget-constrained and are directing users toward the cloud with pay-per-use or toward shared federal resources but as much as I can push back, I will because the ability to just harmlessly experiment is so important for real science; if you omit that you lose a lot and I hope that doesn’t happen.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire