Report Addresses the Perils of Dark Silicon

By Tiffany Trader

July 21, 2016

Dark silicon refers to the processing potential that’s lost when thermal constraints disallow full CPU utilization. The gap between transistor scaling and voltage scaling combined with tighter integration of components (multicore, SoCs) has power density ramifications that are of particular concern for embedded computing, but high-performance computing faces similar “dark power” challenges. Bringing attention to this issue and exploring common solutions was the goal of the Dagstuhl Seminar 16052, “Dark Silicon: From Embedded to HPC Systems.”

A report of the same name looks at the unique and shared challenges facing both communities and provides an overview of the topics covered by the individual speakers in the seminar. Proposed solutions focus on “flexible thermal/power/resource management techniques both for runtime, design time as well as hybrid solutions.”

In the executive summary, authors Hans Michael Gerndt (TU München), Michael Glaß (FAU Erlangen), Sri Parameswaran (University of New South Wales), and Barry L. Rountree (Lawrence Livermore) assert that with future technology nodes, it will be “infeasible to operate all on-chip components at full performance at the same time due to the thermal constraints (peak temperature, spatial and temporal thermal gradients etc.).”

The situation is not as restricted for high-performance computing since heat is removed with a variety of cooling techniques, but with 20MW-class systems not far off, power grid limitations and energy costs pose serious concerns. The report notes that the five year energy costs of today’s largest systems are roughly equivalent to the purchase price. At approximately $1 million per year per MW of load, the power challenge is both a technological and budgetary concern. We’ve all heard about supercomputers that sit idle due to lack of funds or disruptions in power supply.

Today’s biggest machines already require careful power management. As the authors note, HPC facilities have contracts with the energy companies specifying usage, and going below or above these levels imposes hefty overages. Large swings in power demand, for example dropping load suddenly from 20 MW to 10 MW, pose another liability, not only disrupting workloads, but endangering power grid operations. With these challenges, optimized power distribution is essential.

For many of the fastest supercomputers, the only time the machine exercises its full power capacity is during setup and benchmarking.

Write the authors:

“During burn-in (and perhaps while getting a result to go onto the top-500 list) the machine will run dozens or hundreds of instances of Linpack. This code is quite simple and often hand-optimized, resulting in an unusually well-balanced execution that manages to keep vector units, cache lines and DRAM busy simultaneously. The percent of allocated power often reaches 95% or greater, with one instance in recent memory exceeding 100% and blowing circuit breakers. After these initial runs, however, the mission-critical simulation codes begin to execute and they rarely exceed 60% of allocated power. The remaining 40% of electrical capacity is dark: just as unused and just as inaccessible as dark silicon.

“While we would like to increase the power consumption (and thus performance) of these simulation codes, a more realistic solution in the exascale timeframe is hardware overprovisioning. This solution requires buying more compute resources than can be executed at maximum power draw simultaneously. For example, if most codes are expected to use 50% of allocated power, the optimal cluster would have twice as many nodes.

“Making this a feasible design requires management of power as a first-class resource at the level of the scheduler, the run-time system, and on individual nodes. Hardware power capping must be present. Given this, we can theoretically move power within and across jobs, using all allocated power to maximize throughput.”

The report concludes with a list of 11 takeaways (reproduced below) gleaned from working group panels and participant discussion:

1. Dark silicon is a thermal problem in embedded and a power problem in HPC. HPC can cool down while in the embedded world you can’t. Therefore HPC can power up everything if they have enough power. But the costs for providing enough power for rare use cases have to be rectified.

2. Better tools are required on both sides to understand and optimize applications.

3. Better support for optimizations is required through the whole stack from high level languages down to the hardware.

4. In both communities run-time systems will get more important. Applications will have to be written in a way that run-time systems can work effectively.

5. Task migration is of interest to both groups in combination with appropriate run-time management techniques.

6. Embedded also looks at specialized hardware designs while HPC has to use COTS. In HPC, the machine architecture might be tailored towards the application areas. Centers are specialized for certain customers.

7. Heterogeneity on architecture level is important to both groups for energy reduction.

8. Better analyzable programming models are required, providing composable performance models.

9. HPC will have to live with variability. The whole tuning step has to change since reproducibility will no longer be given.

10. Hardware-software co-design will get more important for both groups.

11. Both areas will see accelerator-rich architectures. Some silicon has to be switched off anyway, thus these can be accelerators that might not be useful for the current applications.

The 21-page report should be read in its entirety. The executive summary contains a section on hybrid (design-time and run-time) approaches, and the collection of 22 presentation abstracts showcases a wide range of efforts focused on dark silicon and related power challenges.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ lar Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HP Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This