New File System from PSC Tackles Image Processing on the Fly

By John Russell

July 25, 2016

Processing the high-volume datasets, particularly image data, generated by modern scientific instruments is a huge challenge. Last week, a team of researchers from the Pittsburgh Supercomputing Center reported a novel approach to coping with the data flood – the Virtual Volume File System (VVFS) – which they say significantly reduces storage capacity requirements and facilitates on-the-fly processing to minimize I/O traffic and latency limitations.

Although the researchers developed VVFS capabilities with a life sciences use case (electron microscopy datasets of mouse brains) in mind, they noted the challenge spans many domains such as astronomy, physics, materials science, geology, biology, and engineering. Data acquisition often runs at “gigabyte per second data rates, quickly generate terabyte to petabyte datasets that must be stored, shared, processed and analyzed at similar rates,” report the authors in a paper, A Virtual File System for On-Demand Processing of Multidimensional Datasets.[i]

“Let’s say you have 100 terabytes of electron microscopy data,” said Arthur Wetzel, principal computer scientist at PSC and first author of a paper on the work. Users will begin to analyze the images as soon as they become available; but as the image processing progresses, better images become available. “Yet there’s something that they want to keep before working on the new images. Pretty soon this 100 terabytes has multiplied by at least eight times. That’s not practical for long-term storage.”

‘Connectomics’ research – which attempts to determine the connectivity of neural tissue at levels ranging from functional circuits to whole brains – provided the impetus for the VVFS project.

“[It] requires full synaptic detail that can only be obtained with nanometer resolution electron microscopy. The resulting datasets have data densities exceeding one petabyte per cubic millimeter of brain tissue and thus pose many computational and big data challenges. Our experience and struggles with processing a 32 terabyte electron microscopy dataset (Figure 3, below) of mouse visual cortex in collaboration with Davi Bock, Wei Chung Allen Lee and Clay Reid[ii] motivated us to investigate more efficient and cost effective ways to process large multidimensional data volumes,” they wrote.

The greatly reduced scale of the image shown in Figure 3 (below) only hints at the size and complexity of this volume which was reconstructed from 3.2 million separate 10 megabyte images that had to be aligned both in 2D to form 100,000 by 80,000 pixel planes and in 3D to bring features through the third dimension into alignment. This process had to correct for large compression and nonlinear distortions resulting from cutting ultrathin 40 nanometer sections (just a few hundred atoms thick) and also handled a range of defects including scratches, tears, debris, folds and occasional missing sections.

PSC.Mouse Brain ScanIn conventional data-processing pipelines, raw data are captured, stored and subsequently processed any number of times in order to, for example, apply different types of transformations or feed into different applications. A major drawback is that data transfer and data duplication may become rate-limiting as data sizes increase. With datasets in the multi-terabyte range, the need to maintain multiple intermediate file sets while accurately tracking previous transformations presents difficult storage and data management challenges. “At the petabyte scale this data duplication paradigm will not be sustainable,” contend the authors.

The VVFS file system will solve this problem by keeping the raw images unchanged, storing only the data required to reproduce a processed image rather than the entire image, according to coauthor Jennifer Bakal, PSC public health applications programmer. It does this while producing output that can be processed by any application expecting files. The software will in effect trade computational power for storage space, re-generating desired processed images on the fly instead of storing them.

The work, done with coauthor Markus Dittrich, formerly director of PSC’s Biomedical Applications Group and now at BioTeam Inc. of Middleton Mass., builds on PSC’s image processing effort in the National Library of Medicine’s Visible Human project[iii] of the 1990s. “In our VVFS concept every I/O operation is an opportunity to trade storage for on-the- fly computing while data may already be in memory,” write the researchers.

The researcher argue the VVFS approach (Figure 1, below) overcomes the most severe shortcomings of current conventional data processing pipelines: “VVFS makes processed data available to end-user applications in the form of virtual files which are accessed in the same way as pre-existing real files (e.g. via open, seek and read). Virtual files are not pre-instantiated, do not reside on disk, and their content is dynamically generated in a near-data fashion only when end-user applications access them.

PSC.VVFS

“Conceptually, this is similar to virtual memory page fault handling, the /proc file system in Linux, or file systems for accessing compressed data which (de)compress data only as it is accessed. Even though we present VVFS as a client-server architecture in which final applications may be remotely mounted from distant sites, the server and client may also run on the same machine.”

They describe the VVFS guiding principles as:

  • Bring near-data processing, including large scale parallelism and GPGPU computing, into data analysis and processing workflows to eliminate data duplication and redundant storage and reduce latency.
  • Provide a flexible, pipelined data workflow
  • Minimize data transfer by working directly from local data when possible.
  • Minimize delays between data capture and end-user analyses.
  • Provide user applications with the conventional (yet virtual) file interfaces they expect.
  • Provide an API for specifying on-the-fly computational procedures from raw to virtual files to enable easy deployment of custom written processing routines.

The researchers note that several types of active processing with similarities to VVFS have been suggested to improve data-intensive application performance. For example, “Argonne National Laboratory has used active storage models to demonstrate the performance benefits obtained using compute power co-located with the data store rather than on separate client systems. These benefits derive largely from reduced network traffic between storage servers and compute nodes. The Active Storage work from the Pacific Northwest National Laboratory improves parallel I/O performance by leveraging idle CPU and GPU cycles within the nodes of large Lustre file servers.”

Rather than implement VVFS as a kernel space device driver, the team chose to leverage the FUSE (Filesystem in User Space) technology. FUSE is cross platform and allows fully functional file systems to be run from user space. “From our point of view, FUSE has several significant benefits. First, with FUSE the bulk of the file system can be written in user space, speeding up development and reducing maintenance cost. Typically, in-kernel file systems take many years to mature, while FUSE-based file systems can do so in much shorter time. In fact, for researchers who are often not particularly kernel savvy, FUSE is the only choice to incorporate their research ideas into a working file system.”

Other advantages include significant code reuse since FUSE-based file systems can take advantage of existing libraries and that FUSE-based file systems can be written in many languages (e.g., C, Java, and Python, to name a few). They do note concerns around FUSE-based file systems lower performance compared to in-kernel file systems due to extra memory copies and context switching, “However for our VVFS the relative ease of implementation provided by FUSE greatly outweighs any modest performance drawbacks.”

 

Link to paper: http://www.psc.edu/images/vvfs_rev.pdf

Link to PSC article: http://www.psc.edu/index.php/news-and-media/press-releases/2368-virtual-file-system-will-save-vast-computer-storage-space

[i] A Virtual File System for On-Demand Processing of Multidimensional Datasets, by Arthur Wetzel, Jennifer Bakal, and Markust Dittrich, presented at XSEDE 16; http://www.psc.edu/images/vvfs_rev.pdf

[ii] Bock, D., et al., Network Anatomy and In Vivo Physiology of a Group of Visual Cortical Neurons. Nature, 471, 177- 182, 2011.

[iii] https://www.nlm.nih.gov/research/visible/visible_human.html

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ll get there at last month’s MIT-IBM Watson AI Lab’s AI Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve the problem, NASA researchers are using the world’s fastes Read more…

By Staff report

Chaminade University’s Immersion Program Builds Capacity for Data Science in Hawaii, Pacific Region

October 10, 2019

Kuleana is a uniquely Hawaiian value and practice which embodies responsibility to self, community, and the ‘aina' (land). At Chaminade University, a federally designated Native Hawaiian serving university in Hawai‘i Read more…

By Faith Singer-Villalobos

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

HPC in the Cloud: Avoid These Common Pitfalls

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community.]

It seems that everyone is experimenting about cloud computing. Read more…

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

NSF Announces New AI Program; Plans $120M in Funding Next Year

October 8, 2019

As the saying goes, when you’re hot, you’re hot. Right now, AI is scalding. Today the National Science Foundation announced a new AI initiative – The National Artificial Intelligence Research Institutes program – with plans to invest about “$120 million in grants next year... Read more…

By Staff report

DOE Sets Sights on Accelerating AI (and other) Technology Transfer

October 3, 2019

For the past two days DOE leaders along with ~350 members from academia and industry gathered in Chicago to discuss AI development and the ways in which industr Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

ISC Keynote: Thomas Sterling’s Take on Whither HPC

June 20, 2019

Entertaining, insightful, and unafraid to launch the occasional verbal ICBM, HPC pioneer Thomas Sterling delivered his 16th annual closing keynote at ISC yesterday. He explored, among other things: exascale machinations; quantum’s bubbling money pot; Arm’s new HPC viability; Europe’s... Read more…

By John Russell

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This