New File System from PSC Tackles Image Processing on the Fly

By John Russell

July 25, 2016

Processing the high-volume datasets, particularly image data, generated by modern scientific instruments is a huge challenge. Last week, a team of researchers from the Pittsburgh Supercomputing Center reported a novel approach to coping with the data flood – the Virtual Volume File System (VVFS) – which they say significantly reduces storage capacity requirements and facilitates on-the-fly processing to minimize I/O traffic and latency limitations.

Although the researchers developed VVFS capabilities with a life sciences use case (electron microscopy datasets of mouse brains) in mind, they noted the challenge spans many domains such as astronomy, physics, materials science, geology, biology, and engineering. Data acquisition often runs at “gigabyte per second data rates, quickly generate terabyte to petabyte datasets that must be stored, shared, processed and analyzed at similar rates,” report the authors in a paper, A Virtual File System for On-Demand Processing of Multidimensional Datasets.[i]

“Let’s say you have 100 terabytes of electron microscopy data,” said Arthur Wetzel, principal computer scientist at PSC and first author of a paper on the work. Users will begin to analyze the images as soon as they become available; but as the image processing progresses, better images become available. “Yet there’s something that they want to keep before working on the new images. Pretty soon this 100 terabytes has multiplied by at least eight times. That’s not practical for long-term storage.”

‘Connectomics’ research – which attempts to determine the connectivity of neural tissue at levels ranging from functional circuits to whole brains – provided the impetus for the VVFS project.

“[It] requires full synaptic detail that can only be obtained with nanometer resolution electron microscopy. The resulting datasets have data densities exceeding one petabyte per cubic millimeter of brain tissue and thus pose many computational and big data challenges. Our experience and struggles with processing a 32 terabyte electron microscopy dataset (Figure 3, below) of mouse visual cortex in collaboration with Davi Bock, Wei Chung Allen Lee and Clay Reid[ii] motivated us to investigate more efficient and cost effective ways to process large multidimensional data volumes,” they wrote.

The greatly reduced scale of the image shown in Figure 3 (below) only hints at the size and complexity of this volume which was reconstructed from 3.2 million separate 10 megabyte images that had to be aligned both in 2D to form 100,000 by 80,000 pixel planes and in 3D to bring features through the third dimension into alignment. This process had to correct for large compression and nonlinear distortions resulting from cutting ultrathin 40 nanometer sections (just a few hundred atoms thick) and also handled a range of defects including scratches, tears, debris, folds and occasional missing sections.

PSC.Mouse Brain ScanIn conventional data-processing pipelines, raw data are captured, stored and subsequently processed any number of times in order to, for example, apply different types of transformations or feed into different applications. A major drawback is that data transfer and data duplication may become rate-limiting as data sizes increase. With datasets in the multi-terabyte range, the need to maintain multiple intermediate file sets while accurately tracking previous transformations presents difficult storage and data management challenges. “At the petabyte scale this data duplication paradigm will not be sustainable,” contend the authors.

The VVFS file system will solve this problem by keeping the raw images unchanged, storing only the data required to reproduce a processed image rather than the entire image, according to coauthor Jennifer Bakal, PSC public health applications programmer. It does this while producing output that can be processed by any application expecting files. The software will in effect trade computational power for storage space, re-generating desired processed images on the fly instead of storing them.

The work, done with coauthor Markus Dittrich, formerly director of PSC’s Biomedical Applications Group and now at BioTeam Inc. of Middleton Mass., builds on PSC’s image processing effort in the National Library of Medicine’s Visible Human project[iii] of the 1990s. “In our VVFS concept every I/O operation is an opportunity to trade storage for on-the- fly computing while data may already be in memory,” write the researchers.

The researcher argue the VVFS approach (Figure 1, below) overcomes the most severe shortcomings of current conventional data processing pipelines: “VVFS makes processed data available to end-user applications in the form of virtual files which are accessed in the same way as pre-existing real files (e.g. via open, seek and read). Virtual files are not pre-instantiated, do not reside on disk, and their content is dynamically generated in a near-data fashion only when end-user applications access them.

PSC.VVFS

“Conceptually, this is similar to virtual memory page fault handling, the /proc file system in Linux, or file systems for accessing compressed data which (de)compress data only as it is accessed. Even though we present VVFS as a client-server architecture in which final applications may be remotely mounted from distant sites, the server and client may also run on the same machine.”

They describe the VVFS guiding principles as:

  • Bring near-data processing, including large scale parallelism and GPGPU computing, into data analysis and processing workflows to eliminate data duplication and redundant storage and reduce latency.
  • Provide a flexible, pipelined data workflow
  • Minimize data transfer by working directly from local data when possible.
  • Minimize delays between data capture and end-user analyses.
  • Provide user applications with the conventional (yet virtual) file interfaces they expect.
  • Provide an API for specifying on-the-fly computational procedures from raw to virtual files to enable easy deployment of custom written processing routines.

The researchers note that several types of active processing with similarities to VVFS have been suggested to improve data-intensive application performance. For example, “Argonne National Laboratory has used active storage models to demonstrate the performance benefits obtained using compute power co-located with the data store rather than on separate client systems. These benefits derive largely from reduced network traffic between storage servers and compute nodes. The Active Storage work from the Pacific Northwest National Laboratory improves parallel I/O performance by leveraging idle CPU and GPU cycles within the nodes of large Lustre file servers.”

Rather than implement VVFS as a kernel space device driver, the team chose to leverage the FUSE (Filesystem in User Space) technology. FUSE is cross platform and allows fully functional file systems to be run from user space. “From our point of view, FUSE has several significant benefits. First, with FUSE the bulk of the file system can be written in user space, speeding up development and reducing maintenance cost. Typically, in-kernel file systems take many years to mature, while FUSE-based file systems can do so in much shorter time. In fact, for researchers who are often not particularly kernel savvy, FUSE is the only choice to incorporate their research ideas into a working file system.”

Other advantages include significant code reuse since FUSE-based file systems can take advantage of existing libraries and that FUSE-based file systems can be written in many languages (e.g., C, Java, and Python, to name a few). They do note concerns around FUSE-based file systems lower performance compared to in-kernel file systems due to extra memory copies and context switching, “However for our VVFS the relative ease of implementation provided by FUSE greatly outweighs any modest performance drawbacks.”

 

Link to paper: http://www.psc.edu/images/vvfs_rev.pdf

Link to PSC article: http://www.psc.edu/index.php/news-and-media/press-releases/2368-virtual-file-system-will-save-vast-computer-storage-space

[i] A Virtual File System for On-Demand Processing of Multidimensional Datasets, by Arthur Wetzel, Jennifer Bakal, and Markust Dittrich, presented at XSEDE 16; http://www.psc.edu/images/vvfs_rev.pdf

[ii] Bock, D., et al., Network Anatomy and In Vivo Physiology of a Group of Visual Cortical Neurons. Nature, 471, 177- 182, 2011.

[iii] https://www.nlm.nih.gov/research/visible/visible_human.html

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are already ensconced at the venue. In any case, you're busy, so he Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Transforming Dark Data for Insights and Discoveries in Healthcare

Healthcare in the USA produces an enormous amount of patient-related data each year. It is likely that the average person will generate over one million gigabytes of health-related data across his or her lifetime, equivalent to 300 million books. Read more…

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the GFS – its first new dynamical core in nearly 40 years – w Read more…

By Oliver Peckham

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

Building the Team: South African Style

June 9, 2019

We’re only eight days away from the start of the ISC 2019 Student Cluster Competition. Fourteen student teams from eleven countries will travel to Frankfurt, Read more…

By Dan Olds

Scientists Solve Cosmic Mystery Through Black Hole Simulations

June 6, 2019

An international team of researchers has finally solved a long-standing cosmic mystery – and to do it, they needed to produce the most detailed black hole simulation ever created. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This