New File System from PSC Tackles Image Processing on the Fly

By John Russell

July 25, 2016

Processing the high-volume datasets, particularly image data, generated by modern scientific instruments is a huge challenge. Last week, a team of researchers from the Pittsburgh Supercomputing Center reported a novel approach to coping with the data flood – the Virtual Volume File System (VVFS) – which they say significantly reduces storage capacity requirements and facilitates on-the-fly processing to minimize I/O traffic and latency limitations.

Although the researchers developed VVFS capabilities with a life sciences use case (electron microscopy datasets of mouse brains) in mind, they noted the challenge spans many domains such as astronomy, physics, materials science, geology, biology, and engineering. Data acquisition often runs at “gigabyte per second data rates, quickly generate terabyte to petabyte datasets that must be stored, shared, processed and analyzed at similar rates,” report the authors in a paper, A Virtual File System for On-Demand Processing of Multidimensional Datasets.[i]

“Let’s say you have 100 terabytes of electron microscopy data,” said Arthur Wetzel, principal computer scientist at PSC and first author of a paper on the work. Users will begin to analyze the images as soon as they become available; but as the image processing progresses, better images become available. “Yet there’s something that they want to keep before working on the new images. Pretty soon this 100 terabytes has multiplied by at least eight times. That’s not practical for long-term storage.”

‘Connectomics’ research – which attempts to determine the connectivity of neural tissue at levels ranging from functional circuits to whole brains – provided the impetus for the VVFS project.

“[It] requires full synaptic detail that can only be obtained with nanometer resolution electron microscopy. The resulting datasets have data densities exceeding one petabyte per cubic millimeter of brain tissue and thus pose many computational and big data challenges. Our experience and struggles with processing a 32 terabyte electron microscopy dataset (Figure 3, below) of mouse visual cortex in collaboration with Davi Bock, Wei Chung Allen Lee and Clay Reid[ii] motivated us to investigate more efficient and cost effective ways to process large multidimensional data volumes,” they wrote.

The greatly reduced scale of the image shown in Figure 3 (below) only hints at the size and complexity of this volume which was reconstructed from 3.2 million separate 10 megabyte images that had to be aligned both in 2D to form 100,000 by 80,000 pixel planes and in 3D to bring features through the third dimension into alignment. This process had to correct for large compression and nonlinear distortions resulting from cutting ultrathin 40 nanometer sections (just a few hundred atoms thick) and also handled a range of defects including scratches, tears, debris, folds and occasional missing sections.

PSC.Mouse Brain ScanIn conventional data-processing pipelines, raw data are captured, stored and subsequently processed any number of times in order to, for example, apply different types of transformations or feed into different applications. A major drawback is that data transfer and data duplication may become rate-limiting as data sizes increase. With datasets in the multi-terabyte range, the need to maintain multiple intermediate file sets while accurately tracking previous transformations presents difficult storage and data management challenges. “At the petabyte scale this data duplication paradigm will not be sustainable,” contend the authors.

The VVFS file system will solve this problem by keeping the raw images unchanged, storing only the data required to reproduce a processed image rather than the entire image, according to coauthor Jennifer Bakal, PSC public health applications programmer. It does this while producing output that can be processed by any application expecting files. The software will in effect trade computational power for storage space, re-generating desired processed images on the fly instead of storing them.

The work, done with coauthor Markus Dittrich, formerly director of PSC’s Biomedical Applications Group and now at BioTeam Inc. of Middleton Mass., builds on PSC’s image processing effort in the National Library of Medicine’s Visible Human project[iii] of the 1990s. “In our VVFS concept every I/O operation is an opportunity to trade storage for on-the- fly computing while data may already be in memory,” write the researchers.

The researcher argue the VVFS approach (Figure 1, below) overcomes the most severe shortcomings of current conventional data processing pipelines: “VVFS makes processed data available to end-user applications in the form of virtual files which are accessed in the same way as pre-existing real files (e.g. via open, seek and read). Virtual files are not pre-instantiated, do not reside on disk, and their content is dynamically generated in a near-data fashion only when end-user applications access them.

PSC.VVFS

“Conceptually, this is similar to virtual memory page fault handling, the /proc file system in Linux, or file systems for accessing compressed data which (de)compress data only as it is accessed. Even though we present VVFS as a client-server architecture in which final applications may be remotely mounted from distant sites, the server and client may also run on the same machine.”

They describe the VVFS guiding principles as:

  • Bring near-data processing, including large scale parallelism and GPGPU computing, into data analysis and processing workflows to eliminate data duplication and redundant storage and reduce latency.
  • Provide a flexible, pipelined data workflow
  • Minimize data transfer by working directly from local data when possible.
  • Minimize delays between data capture and end-user analyses.
  • Provide user applications with the conventional (yet virtual) file interfaces they expect.
  • Provide an API for specifying on-the-fly computational procedures from raw to virtual files to enable easy deployment of custom written processing routines.

The researchers note that several types of active processing with similarities to VVFS have been suggested to improve data-intensive application performance. For example, “Argonne National Laboratory has used active storage models to demonstrate the performance benefits obtained using compute power co-located with the data store rather than on separate client systems. These benefits derive largely from reduced network traffic between storage servers and compute nodes. The Active Storage work from the Pacific Northwest National Laboratory improves parallel I/O performance by leveraging idle CPU and GPU cycles within the nodes of large Lustre file servers.”

Rather than implement VVFS as a kernel space device driver, the team chose to leverage the FUSE (Filesystem in User Space) technology. FUSE is cross platform and allows fully functional file systems to be run from user space. “From our point of view, FUSE has several significant benefits. First, with FUSE the bulk of the file system can be written in user space, speeding up development and reducing maintenance cost. Typically, in-kernel file systems take many years to mature, while FUSE-based file systems can do so in much shorter time. In fact, for researchers who are often not particularly kernel savvy, FUSE is the only choice to incorporate their research ideas into a working file system.”

Other advantages include significant code reuse since FUSE-based file systems can take advantage of existing libraries and that FUSE-based file systems can be written in many languages (e.g., C, Java, and Python, to name a few). They do note concerns around FUSE-based file systems lower performance compared to in-kernel file systems due to extra memory copies and context switching, “However for our VVFS the relative ease of implementation provided by FUSE greatly outweighs any modest performance drawbacks.”

 

Link to paper: http://www.psc.edu/images/vvfs_rev.pdf

Link to PSC article: http://www.psc.edu/index.php/news-and-media/press-releases/2368-virtual-file-system-will-save-vast-computer-storage-space

[i] A Virtual File System for On-Demand Processing of Multidimensional Datasets, by Arthur Wetzel, Jennifer Bakal, and Markust Dittrich, presented at XSEDE 16; http://www.psc.edu/images/vvfs_rev.pdf

[ii] Bock, D., et al., Network Anatomy and In Vivo Physiology of a Group of Visual Cortical Neurons. Nature, 471, 177- 182, 2011.

[iii] https://www.nlm.nih.gov/research/visible/visible_human.html

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement... Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This