New File System from PSC Tackles Image Processing on the Fly

By John Russell

July 25, 2016

Processing the high-volume datasets, particularly image data, generated by modern scientific instruments is a huge challenge. Last week, a team of researchers from the Pittsburgh Supercomputing Center reported a novel approach to coping with the data flood – the Virtual Volume File System (VVFS) – which they say significantly reduces storage capacity requirements and facilitates on-the-fly processing to minimize I/O traffic and latency limitations.

Although the researchers developed VVFS capabilities with a life sciences use case (electron microscopy datasets of mouse brains) in mind, they noted the challenge spans many domains such as astronomy, physics, materials science, geology, biology, and engineering. Data acquisition often runs at “gigabyte per second data rates, quickly generate terabyte to petabyte datasets that must be stored, shared, processed and analyzed at similar rates,” report the authors in a paper, A Virtual File System for On-Demand Processing of Multidimensional Datasets.[i]

“Let’s say you have 100 terabytes of electron microscopy data,” said Arthur Wetzel, principal computer scientist at PSC and first author of a paper on the work. Users will begin to analyze the images as soon as they become available; but as the image processing progresses, better images become available. “Yet there’s something that they want to keep before working on the new images. Pretty soon this 100 terabytes has multiplied by at least eight times. That’s not practical for long-term storage.”

‘Connectomics’ research – which attempts to determine the connectivity of neural tissue at levels ranging from functional circuits to whole brains – provided the impetus for the VVFS project.

“[It] requires full synaptic detail that can only be obtained with nanometer resolution electron microscopy. The resulting datasets have data densities exceeding one petabyte per cubic millimeter of brain tissue and thus pose many computational and big data challenges. Our experience and struggles with processing a 32 terabyte electron microscopy dataset (Figure 3, below) of mouse visual cortex in collaboration with Davi Bock, Wei Chung Allen Lee and Clay Reid[ii] motivated us to investigate more efficient and cost effective ways to process large multidimensional data volumes,” they wrote.

The greatly reduced scale of the image shown in Figure 3 (below) only hints at the size and complexity of this volume which was reconstructed from 3.2 million separate 10 megabyte images that had to be aligned both in 2D to form 100,000 by 80,000 pixel planes and in 3D to bring features through the third dimension into alignment. This process had to correct for large compression and nonlinear distortions resulting from cutting ultrathin 40 nanometer sections (just a few hundred atoms thick) and also handled a range of defects including scratches, tears, debris, folds and occasional missing sections.

PSC.Mouse Brain ScanIn conventional data-processing pipelines, raw data are captured, stored and subsequently processed any number of times in order to, for example, apply different types of transformations or feed into different applications. A major drawback is that data transfer and data duplication may become rate-limiting as data sizes increase. With datasets in the multi-terabyte range, the need to maintain multiple intermediate file sets while accurately tracking previous transformations presents difficult storage and data management challenges. “At the petabyte scale this data duplication paradigm will not be sustainable,” contend the authors.

The VVFS file system will solve this problem by keeping the raw images unchanged, storing only the data required to reproduce a processed image rather than the entire image, according to coauthor Jennifer Bakal, PSC public health applications programmer. It does this while producing output that can be processed by any application expecting files. The software will in effect trade computational power for storage space, re-generating desired processed images on the fly instead of storing them.

The work, done with coauthor Markus Dittrich, formerly director of PSC’s Biomedical Applications Group and now at BioTeam Inc. of Middleton Mass., builds on PSC’s image processing effort in the National Library of Medicine’s Visible Human project[iii] of the 1990s. “In our VVFS concept every I/O operation is an opportunity to trade storage for on-the- fly computing while data may already be in memory,” write the researchers.

The researcher argue the VVFS approach (Figure 1, below) overcomes the most severe shortcomings of current conventional data processing pipelines: “VVFS makes processed data available to end-user applications in the form of virtual files which are accessed in the same way as pre-existing real files (e.g. via open, seek and read). Virtual files are not pre-instantiated, do not reside on disk, and their content is dynamically generated in a near-data fashion only when end-user applications access them.

PSC.VVFS

“Conceptually, this is similar to virtual memory page fault handling, the /proc file system in Linux, or file systems for accessing compressed data which (de)compress data only as it is accessed. Even though we present VVFS as a client-server architecture in which final applications may be remotely mounted from distant sites, the server and client may also run on the same machine.”

They describe the VVFS guiding principles as:

  • Bring near-data processing, including large scale parallelism and GPGPU computing, into data analysis and processing workflows to eliminate data duplication and redundant storage and reduce latency.
  • Provide a flexible, pipelined data workflow
  • Minimize data transfer by working directly from local data when possible.
  • Minimize delays between data capture and end-user analyses.
  • Provide user applications with the conventional (yet virtual) file interfaces they expect.
  • Provide an API for specifying on-the-fly computational procedures from raw to virtual files to enable easy deployment of custom written processing routines.

The researchers note that several types of active processing with similarities to VVFS have been suggested to improve data-intensive application performance. For example, “Argonne National Laboratory has used active storage models to demonstrate the performance benefits obtained using compute power co-located with the data store rather than on separate client systems. These benefits derive largely from reduced network traffic between storage servers and compute nodes. The Active Storage work from the Pacific Northwest National Laboratory improves parallel I/O performance by leveraging idle CPU and GPU cycles within the nodes of large Lustre file servers.”

Rather than implement VVFS as a kernel space device driver, the team chose to leverage the FUSE (Filesystem in User Space) technology. FUSE is cross platform and allows fully functional file systems to be run from user space. “From our point of view, FUSE has several significant benefits. First, with FUSE the bulk of the file system can be written in user space, speeding up development and reducing maintenance cost. Typically, in-kernel file systems take many years to mature, while FUSE-based file systems can do so in much shorter time. In fact, for researchers who are often not particularly kernel savvy, FUSE is the only choice to incorporate their research ideas into a working file system.”

Other advantages include significant code reuse since FUSE-based file systems can take advantage of existing libraries and that FUSE-based file systems can be written in many languages (e.g., C, Java, and Python, to name a few). They do note concerns around FUSE-based file systems lower performance compared to in-kernel file systems due to extra memory copies and context switching, “However for our VVFS the relative ease of implementation provided by FUSE greatly outweighs any modest performance drawbacks.”

 

Link to paper: http://www.psc.edu/images/vvfs_rev.pdf

Link to PSC article: http://www.psc.edu/index.php/news-and-media/press-releases/2368-virtual-file-system-will-save-vast-computer-storage-space

[i] A Virtual File System for On-Demand Processing of Multidimensional Datasets, by Arthur Wetzel, Jennifer Bakal, and Markust Dittrich, presented at XSEDE 16; http://www.psc.edu/images/vvfs_rev.pdf

[ii] Bock, D., et al., Network Anatomy and In Vivo Physiology of a Group of Visual Cortical Neurons. Nature, 471, 177- 182, 2011.

[iii] https://www.nlm.nih.gov/research/visible/visible_human.html

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire