Transistors Won’t Shrink Beyond 2021, Says Final ITRS Report

By Tiffany Trader

July 28, 2016

The final International Technology Roadmap for Semiconductors (ITRS) is now out. The highly-detailed multi-part report, collaboratively published by a group of international semiconductor experts, offers guidance on the technological challenges and opportunities for the semiconductor industry through 2030. One of the major takeaways is the insistence that Moore’s law will continue for some time even though traditional transistor scaling (through smaller feature sizes) is expected to hit an economic wall in 2021.

In the executive summary, the report takes a hard “long live Moore’s Law” stance, calling out media for getting it wrong: “The question of how long will Moore’s Law last has been posed an infinite number of times since the 80s and every 5-10 years publications claiming the end of Moore’s Law have appeared from the most unthinkable and yet ‘reputedly qualified’ sources. Despite these alarmist publications the trend has continued unabated for the past 50 years by morphing from one scaling method to another, where one method ended the next took over. This concept has completely eluded the comprehension of casual observers that have mistakenly interpreted the end of one scaling method as the end of Moore’s law. As stated before, bipolar transistors were replaced by PMOS that were replaced by NMOS that were also replaced by CMOS. Equivalent Scaling succeeded Geometrical Scaling when this could no longer operate and now 3D Power Scaling is taking off.”

In its strictest sense the observation-turned-prophecy made by Gordon Moore in 1965 specifies that the number of transistors on an integrated circuit will double every 18-24 months, but the “law” is also used as shorthand for faster, cheaper processing power. When it comes to this second interpretation, doubling transistor densities hasn’t resulted in significantly higher performance since the loss of Dennard scaling about a decade ago.

“We’ve been living in this bubble where the computing industry could rely on the device side to do their job, and so the computer industry and the device industry really had this very nice wall between them. That wall really started to crumble in 2005, and since that time we’ve been getting more transistors but they’re really not all that much better,” said Tom Conte, the 2015 president of the IEEE Computer Society and a co-leader of the IEEE Rebooting Computing Initiative, in an interview with IEEE Spectrum.

The ITRS is anticipating that the industry will move away from FinFET to gate-all-around (GAA) and potentially to vertical nanowires in the 2019 timeframe. This will be needed when gate length scaling is constrained by the limits of fin width and contact width, say the authors. Maintaining performance, reliability and other requirements at scale will require material innovations, e.g., “high-k gate dialetrics, metal gate electrodes, elevated source/drain, advanced annealing and doping techniques, low-k materials.”

By 2020, feature sizes will be down to just a few nanometers, at which point, vertical scaling is set to become more economical. The “rather obvious” solution to running out of horizontal space is go vertical, say the authors, noting that the approach is already being demonstrated in the flash memory space.

“Orienting the transistor substrate vertically and then completely surrounding it with a sequence of dielectric and metal layers deposited by means of deposition to fabricate the composite gate structure can more easily [be] accomplished if the transistor is vertically oriented,” states the report. “It is clear that this method reduces the transistor footprint and in conjunction with creating multiple layers of transistors one on top of the other will accelerate the level of transistor density beyond Moore’s Law traditional trends.”

ITRS 2015 transistor structure roadmap

More Moore

Section 5 of the report focuses on “More Moore” challenges, referring to the need to improve functionalities that do not necessarily scale according to Moore’s law. Even with the benefit of Moore’s scaling, system scaling is limited by power and interconnect bandwidth, for example.

The authors point to three applications that are driving innovations:

+ High-performance computing – targeting more performance (operating frequency) at constant power density (constrained by thermal).
+ Mobile computing – tartgeting more performance (operating frequency) and functionality at constant energy (constrained by battery) and cost.
+ Autonomous sensing & computing (Internet-of-Things: IoT) – targeting reduced leakage & variability.

The section explores the physical, electrical and reliability requirements for logic and memory technologies to sustain PPAC (power, performance, area and cost) scaling. Ideally, node-to-node scaling would achieve gains in line with the following “PPAC” values every 2-3 years:

+ (P)erformance: <30% more maxiumum operating frequency at constant energy
+ (P)ower: >50% less energy per switching at given performance
+ (A)rea: >50% area reduction
+ (C)ost: <25% wafer cost – 35-40% less die cost for scaled die

With the acknowledgement that dimensional scaling is no longer sufficient to sustain higher speed, higher density, lower power and greater functionality, this section of the ITRS report focuses on key challenge areas related to processing modules, tools, material properties and other relevant technologies.

The End of ITRS

The current report, titled ITRS 2.0 2015 Edition, is the last one that will be published. The global roadmap has been updated nearly every year since the first version in 1998. Its predecessor, the National Technology Roadmap for Semiconductors, was started by the US trade group, the Semiconductor Industry Association (SIA), in 1993. SIA’s membership roster includes Intel, AMD, IBM and many other industry heavyweights.

As explanation for the disbanding of ITRS, SIA, a major ITRS sponsor, stated: “Faced with ever-evolving research needs and technology challenges, industry leaders have decided to conclude the ITRS and transition to new ways to advance semiconductor research and bring about the next generation of semiconductor innovations.”

SIA will continue to conduct its own research and will also collaborate with the Semiconductor Research Association. Further, the IEEE, as part of its Rebooting Computing initiative, has started a more general roadmapping project, called the International Roadmap for Devices and Systems or IRDS.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance computing and the advanced-scale AI market. Early customers Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerated for AI applications. Now, Amazon Web Services (AWS) is int Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testbed (AQT), which is based at Lawrence Berkeley National Labor Read more…

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

After launching its second-generation intelligence processing units (IPUs) in 2020, four years after emerging from stealth, Graphcore is now boosting its product line with its largest commercially-available IPU-based sys Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 577238446

Putting bitrates into perspective

Recently, we talked about the advances NICE DCV has made to push pixels from cloud-hosted desktops or applications over the internet even more efficiently than before. Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerate Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testb Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire