Transistors Won’t Shrink Beyond 2021, Says Final ITRS Report

By Tiffany Trader

July 28, 2016

The final International Technology Roadmap for Semiconductors (ITRS) is now out. The highly-detailed multi-part report, collaboratively published by a group of international semiconductor experts, offers guidance on the technological challenges and opportunities for the semiconductor industry through 2030. One of the major takeaways is the insistence that Moore’s law will continue for some time even though traditional transistor scaling (through smaller feature sizes) is expected to hit an economic wall in 2021.

In the executive summary, the report takes a hard “long live Moore’s Law” stance, calling out media for getting it wrong: “The question of how long will Moore’s Law last has been posed an infinite number of times since the 80s and every 5-10 years publications claiming the end of Moore’s Law have appeared from the most unthinkable and yet ‘reputedly qualified’ sources. Despite these alarmist publications the trend has continued unabated for the past 50 years by morphing from one scaling method to another, where one method ended the next took over. This concept has completely eluded the comprehension of casual observers that have mistakenly interpreted the end of one scaling method as the end of Moore’s law. As stated before, bipolar transistors were replaced by PMOS that were replaced by NMOS that were also replaced by CMOS. Equivalent Scaling succeeded Geometrical Scaling when this could no longer operate and now 3D Power Scaling is taking off.”

In its strictest sense the observation-turned-prophecy made by Gordon Moore in 1965 specifies that the number of transistors on an integrated circuit will double every 18-24 months, but the “law” is also used as shorthand for faster, cheaper processing power. When it comes to this second interpretation, doubling transistor densities hasn’t resulted in significantly higher performance since the loss of Dennard scaling about a decade ago.

“We’ve been living in this bubble where the computing industry could rely on the device side to do their job, and so the computer industry and the device industry really had this very nice wall between them. That wall really started to crumble in 2005, and since that time we’ve been getting more transistors but they’re really not all that much better,” said Tom Conte, the 2015 president of the IEEE Computer Society and a co-leader of the IEEE Rebooting Computing Initiative, in an interview with IEEE Spectrum.

The ITRS is anticipating that the industry will move away from FinFET to gate-all-around (GAA) and potentially to vertical nanowires in the 2019 timeframe. This will be needed when gate length scaling is constrained by the limits of fin width and contact width, say the authors. Maintaining performance, reliability and other requirements at scale will require material innovations, e.g., “high-k gate dialetrics, metal gate electrodes, elevated source/drain, advanced annealing and doping techniques, low-k materials.”

By 2020, feature sizes will be down to just a few nanometers, at which point, vertical scaling is set to become more economical. The “rather obvious” solution to running out of horizontal space is go vertical, say the authors, noting that the approach is already being demonstrated in the flash memory space.

“Orienting the transistor substrate vertically and then completely surrounding it with a sequence of dielectric and metal layers deposited by means of deposition to fabricate the composite gate structure can more easily [be] accomplished if the transistor is vertically oriented,” states the report. “It is clear that this method reduces the transistor footprint and in conjunction with creating multiple layers of transistors one on top of the other will accelerate the level of transistor density beyond Moore’s Law traditional trends.”

ITRS 2015 transistor structure roadmap

More Moore

Section 5 of the report focuses on “More Moore” challenges, referring to the need to improve functionalities that do not necessarily scale according to Moore’s law. Even with the benefit of Moore’s scaling, system scaling is limited by power and interconnect bandwidth, for example.

The authors point to three applications that are driving innovations:

+ High-performance computing – targeting more performance (operating frequency) at constant power density (constrained by thermal).
+ Mobile computing – tartgeting more performance (operating frequency) and functionality at constant energy (constrained by battery) and cost.
+ Autonomous sensing & computing (Internet-of-Things: IoT) – targeting reduced leakage & variability.

The section explores the physical, electrical and reliability requirements for logic and memory technologies to sustain PPAC (power, performance, area and cost) scaling. Ideally, node-to-node scaling would achieve gains in line with the following “PPAC” values every 2-3 years:

+ (P)erformance: <30% more maxiumum operating frequency at constant energy
+ (P)ower: >50% less energy per switching at given performance
+ (A)rea: >50% area reduction
+ (C)ost: <25% wafer cost – 35-40% less die cost for scaled die

With the acknowledgement that dimensional scaling is no longer sufficient to sustain higher speed, higher density, lower power and greater functionality, this section of the ITRS report focuses on key challenge areas related to processing modules, tools, material properties and other relevant technologies.

The End of ITRS

The current report, titled ITRS 2.0 2015 Edition, is the last one that will be published. The global roadmap has been updated nearly every year since the first version in 1998. Its predecessor, the National Technology Roadmap for Semiconductors, was started by the US trade group, the Semiconductor Industry Association (SIA), in 1993. SIA’s membership roster includes Intel, AMD, IBM and many other industry heavyweights.

As explanation for the disbanding of ITRS, SIA, a major ITRS sponsor, stated: “Faced with ever-evolving research needs and technology challenges, industry leaders have decided to conclude the ITRS and transition to new ways to advance semiconductor research and bring about the next generation of semiconductor innovations.”

SIA will continue to conduct its own research and will also collaborate with the Semiconductor Research Association. Further, the IEEE, as part of its Rebooting Computing initiative, has started a more general roadmapping project, called the International Roadmap for Devices and Systems or IRDS.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantum Rolls – DOE Dishes $218M; NSF Awards $31M; US Releases ‘Strategic Overview’

September 24, 2018

It was quite a day for U.S. quantum computing. In conjunction with the White House Summit on Advancing American Leadership in Quantum Information Science (QIS) held today, the Department of Energy announced $218 million Read more…

By John Russell

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

Quantum Rolls – DOE Dishes $218M; NSF Awards $31M; US Releases ‘Strategic Overview’

September 24, 2018

It was quite a day for U.S. quantum computing. In conjunction with the White House Summit on Advancing American Leadership in Quantum Information Science (QIS) Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This