Transistors Won’t Shrink Beyond 2021, Says Final ITRS Report

By Tiffany Trader

July 28, 2016

The final International Technology Roadmap for Semiconductors (ITRS) is now out. The highly-detailed multi-part report, collaboratively published by a group of international semiconductor experts, offers guidance on the technological challenges and opportunities for the semiconductor industry through 2030. One of the major takeaways is the insistence that Moore’s law will continue for some time even though traditional transistor scaling (through smaller feature sizes) is expected to hit an economic wall in 2021.

In the executive summary, the report takes a hard “long live Moore’s Law” stance, calling out media for getting it wrong: “The question of how long will Moore’s Law last has been posed an infinite number of times since the 80s and every 5-10 years publications claiming the end of Moore’s Law have appeared from the most unthinkable and yet ‘reputedly qualified’ sources. Despite these alarmist publications the trend has continued unabated for the past 50 years by morphing from one scaling method to another, where one method ended the next took over. This concept has completely eluded the comprehension of casual observers that have mistakenly interpreted the end of one scaling method as the end of Moore’s law. As stated before, bipolar transistors were replaced by PMOS that were replaced by NMOS that were also replaced by CMOS. Equivalent Scaling succeeded Geometrical Scaling when this could no longer operate and now 3D Power Scaling is taking off.”

In its strictest sense the observation-turned-prophecy made by Gordon Moore in 1965 specifies that the number of transistors on an integrated circuit will double every 18-24 months, but the “law” is also used as shorthand for faster, cheaper processing power. When it comes to this second interpretation, doubling transistor densities hasn’t resulted in significantly higher performance since the loss of Dennard scaling about a decade ago.

“We’ve been living in this bubble where the computing industry could rely on the device side to do their job, and so the computer industry and the device industry really had this very nice wall between them. That wall really started to crumble in 2005, and since that time we’ve been getting more transistors but they’re really not all that much better,” said Tom Conte, the 2015 president of the IEEE Computer Society and a co-leader of the IEEE Rebooting Computing Initiative, in an interview with IEEE Spectrum.

The ITRS is anticipating that the industry will move away from FinFET to gate-all-around (GAA) and potentially to vertical nanowires in the 2019 timeframe. This will be needed when gate length scaling is constrained by the limits of fin width and contact width, say the authors. Maintaining performance, reliability and other requirements at scale will require material innovations, e.g., “high-k gate dialetrics, metal gate electrodes, elevated source/drain, advanced annealing and doping techniques, low-k materials.”

By 2020, feature sizes will be down to just a few nanometers, at which point, vertical scaling is set to become more economical. The “rather obvious” solution to running out of horizontal space is go vertical, say the authors, noting that the approach is already being demonstrated in the flash memory space.

“Orienting the transistor substrate vertically and then completely surrounding it with a sequence of dielectric and metal layers deposited by means of deposition to fabricate the composite gate structure can more easily [be] accomplished if the transistor is vertically oriented,” states the report. “It is clear that this method reduces the transistor footprint and in conjunction with creating multiple layers of transistors one on top of the other will accelerate the level of transistor density beyond Moore’s Law traditional trends.”

ITRS 2015 transistor structure roadmap

More Moore

Section 5 of the report focuses on “More Moore” challenges, referring to the need to improve functionalities that do not necessarily scale according to Moore’s law. Even with the benefit of Moore’s scaling, system scaling is limited by power and interconnect bandwidth, for example.

The authors point to three applications that are driving innovations:

+ High-performance computing – targeting more performance (operating frequency) at constant power density (constrained by thermal).
+ Mobile computing – tartgeting more performance (operating frequency) and functionality at constant energy (constrained by battery) and cost.
+ Autonomous sensing & computing (Internet-of-Things: IoT) – targeting reduced leakage & variability.

The section explores the physical, electrical and reliability requirements for logic and memory technologies to sustain PPAC (power, performance, area and cost) scaling. Ideally, node-to-node scaling would achieve gains in line with the following “PPAC” values every 2-3 years:

+ (P)erformance: <30% more maxiumum operating frequency at constant energy
+ (P)ower: >50% less energy per switching at given performance
+ (A)rea: >50% area reduction
+ (C)ost: <25% wafer cost – 35-40% less die cost for scaled die

With the acknowledgement that dimensional scaling is no longer sufficient to sustain higher speed, higher density, lower power and greater functionality, this section of the ITRS report focuses on key challenge areas related to processing modules, tools, material properties and other relevant technologies.

The End of ITRS

The current report, titled ITRS 2.0 2015 Edition, is the last one that will be published. The global roadmap has been updated nearly every year since the first version in 1998. Its predecessor, the National Technology Roadmap for Semiconductors, was started by the US trade group, the Semiconductor Industry Association (SIA), in 1993. SIA’s membership roster includes Intel, AMD, IBM and many other industry heavyweights.

As explanation for the disbanding of ITRS, SIA, a major ITRS sponsor, stated: “Faced with ever-evolving research needs and technology challenges, industry leaders have decided to conclude the ITRS and transition to new ways to advance semiconductor research and bring about the next generation of semiconductor innovations.”

SIA will continue to conduct its own research and will also collaborate with the Semiconductor Research Association. Further, the IEEE, as part of its Rebooting Computing initiative, has started a more general roadmapping project, called the International Roadmap for Devices and Systems or IRDS.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This