IBM Phase Change Device Shows Promise for Emerging AI Apps

By John Russell

August 3, 2016

IBM Research today announced a significant advance in phase-change memristive technology – based on chalcogenide-based phase-change materials – that IBM says has the potential to achieve much higher neuronal circuit densities and lower power in neuromorphic computing. Also, for the first time, researchers demonstrated randomly spiking neurons based on the technology and were able to detect “temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.”

The announcement coincided with the publishing of a paper, Stochastic phase-changing neurons, in Nature Nanotechnology. The work, largely performed at IBM Research Zurich, is part of a sizable body of exciting research currently occurring in the neuromorphic space.

Turning on two large-scale neuromorphic computers – SpiNNaker and BrainScaleS – this spring and making them readily available to researchers marked another major step forward in pursuit of brain-inspired computing. These machines, based on different neuromorphic architectures, mimic much more closely the way brains process information. Why this is important is perhaps best illustrated by an earlier effort to map neuron-like processing onto a traditional supercomputer, in this case Japan’s K Computer.

“They used about 65000 processors [to create] a billion very simple neurons. Call it one percent of the brain – but it’s not really a brain, [just] a very simple network model. This machine consumes the power of 30MW and the system runs 1500X slower than real-time biology,” said Karlheinz Meier, a leader in the Human Brain Project and whose group developed the BrainScaleS machine. In terms of energy efficiency, this K Computer effort was “ten billion times less energy efficient.”

Evangelos Eleftheriou, IBM Fellow
Evangelos Eleftheriou, IBM Fellow

The IBM research takes substantial steps forward on several fronts. “We have been researching phase-change materials for memory applications for over a decade, and our progress in the past 24 months has been remarkable,” said IBM Fellow Evangelos Eleftheriou. “In this period, we have discovered and published new memory techniques, including projected memory, stored 3 bits per cell in phase-change memory for the first time, and now are demonstrating the powerful capabilities of phase-change-based artificial neurons, which can perform various computational primitives such as data-correlation detection and unsupervised learning at high speeds using very little energy.”

IBM scientists organized hundreds of artificial neurons into populations and used them to represent fast and complex signals. Moreover, the artificial neurons have been shown to sustain billions of switching cycles, which would correspond to multiple years of operation at an update frequency of 100 Hz. The energy required for each neuron update was less than five picojoules and the average power less than 120 microwatts — for comparison, 60 million microwatts power a 60 watt lightbulb.

As Eleftheriou notes memristor technology is hardly new, and as promising as it is, there have also been obstacles, notably variability and scaling, but the IBM approach overcomes some of those issues.

Co-author Dr. Abu Sebastian, IBM Research, told HPCwire, “Variability is indeed a big issue for resistive memory technologies such as the ones based on metal-oxides (TiOx, HfOx etc.). But not so much in phase change memory (PCM) devices. We still have a certain amount of inter-device and intra-device variability even in PCM devices. Clearly this type of randomness would be undesirable for memory-type of applications. However, for neuromorphic applications, this could even be advantageous as we show in our paper. The stochastic firing response of the phase change neurons and their ability to represent high frequency signals arise from this randomness or variability.”

IBM Phase Change Device
IBM Phase Change Device

Just the mechanism of IBM’s phase change device technology is fascinating. The artificial neurons designed by IBM scientists in Zurich consist of phase-change materials, including germanium antimony telluride, which exhibit two stable states, an amorphous one (without a clearly defined structure) and a crystalline one (with structure). These materials are the basis of re-writable Blue-ray discs. However, the artificial neurons do not store digital information; they are analog, just like the synapses and neurons in our biological brain.

In the published demonstration, the team applied a series of electrical pulses to the artificial neurons, which resulted in the progressive crystallization of the phase-change material, ultimately causing the neuron to fire. In neuroscience, this function is known as the integrate-and-fire property of biological neurons. This is the foundation for event-based computation and, in principle, is similar to how our brain triggers a response when we touch something hot.

The authors write in the conclusion:

“The ability to represent the membrane potential in artificial spiking neurons renders phase-change devices a promising technology for extremely dense memristive neuro-synaptic arrays. A particularly interesting property is their scalability down to the nanometer scale and the fast and well-understood dynamics of the amorphous-to-crystalline transition. The high speed and low energy at which phase-change neurons operate will be particularly useful in emerging applications such as processing of event-based sensory information, low-power perceptual decision making and probabilistic inference in uncertain conditions. We also envisage that distributed analysis of rapidly emerging, pervasive data sources such as social media data and the ‘Internet of Things’ could benefit from low-power, memristive computational primitives.”

A figure from the paper, shown below, illustrates the principal.

IBM.Fig1

Artificial neuron based on a phase-change device, with an array of plastic synapses at its input. Schematic of an artificial neuron that consists of the input (dendrites), the soma (which comprises the neuronal membrane and the spike event generation mechanism) and the output (axon). The dendrites may be connected to plastic synapses interfacing the neuron with other neurons in a network. The key computational element is the neuronal membrane, which stores the membrane potential in the phase configuration of a nanoscale phase-change device. Owing to their inherent nanosecond-timescale dynamics, nanometre-length-scale dimensions and native stochasticity, these devices enable the emulation of large and dense populations of neurons for bioinspired signal representation and computation.

 

“By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset,” write the researchers in the paper.

Mimicking threshold-based neuronal models with traditional technology can be problematic, note the researchers. “Emulating these by means of conventional CMOS circuits, such as current-mode, voltage-mode and subthreshold transistor circuits, is relatively complex and hinders seamless integration with highly dense synaptic arrays. Moreover, conventional CMOS solutions rely on storing the membrane potential in a capacitor. Even with a drastic scaling of the technology node, realizing the capacitance densities measured in biological neuronal membranes is challenging.”

(A brief note on the phase-change device attributes is included at the end of this article.)

One interesting aspect of the work is demonstration of stochastic behavior of artificial neurons based on the phase-change technology. The authors believe they can turn this into an advantage. The stochastic behavior of neurons in nature results from many sources such as the ionic conductance noise, the chaotic motion of charge carriers due to thermal noise, inter-neuron morphologic variabilities and background noise. This complexity has “restricted the implementation of artificial noisy integrate-and-fire neurons in software simulations”, despite their importance in bio-inspired computation and applications in signal and information processing.

The phase change devices, it turns out, also exhibit stochastic behavior for similar reasons. Think of a population of 1000 artificial neurons based on IBM’s phase-change technology. Broadly, when fed the same signal trains, they will fire at slightly differing rates that track well with standard probability models. This can be extremely useful when using a population of artificial neurons for some tasks.

“The relatively complex computational tasks, such as Bayesian inference, that stochastic neuronal populations can perform with collocated processing and storage render them attractive as a possible alternative to von-Neumann-based algorithms in future cognitive computers.”

Here’s a link to a Youtube video by IBM on the technology posted today.

Note on Phase-Change Device Attributes Excerpted From the Paper

The mushroom-type phase-change devices used in the experiments were fabricated in the 90 nm technology node with the bottom electrode created using a sublithographic key-hole process27. The phase-change material was doped Ge2Sb2Te5. All experiments were conducted on phase-change devices that had been heavily cycled. The bottom electrode had a radius of 20 nm and a length of 65 nm. The phase-change material was 100 nm thick and extended to the top electrode, the radius of which was 100 nm. For the single- neuron experiments, the phase-change device was operated in series with a resistor of 5 kΩ. The experiments using multiple neurons and experiments with neuronal populations were based on a crossbar topology in which 100 phase-change devices were interconnected in a 10 × 10 array unit, with a lateral field-effect transistor used as the access device. We used multiple array units to reach population sizes of up to 500 neurons.

Link to paper: http://www.nature.com/nnano/journal/v11/n8/full/nnano.2016.70.html

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire