Nanotech Grand Challenge & Federal Vision for Future Computing

By John Russell

August 8, 2016

What will computing look like in the post Moore’s Law era? That’s probably a bad way to pose the question and certainly there’s no shortage of ideas. A new federal white paper – A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge – tackles the ‘what’s next’ question and spells out seven specific research and development priorities and identifies the federal entities responsible.

The document, roughly a year in the making, is from the National Nanotechnology Initiative (NNI). The NNI, you may know, has it roots in discussions arising in the late 90s and formal creation by the 21st Century Nanotechnology Research and Development Act in 2003. NNI encompasses a large number of activities has a $1.4B budget request for FY2017.

Intended from the start to be a long-term program with long-term R&D horizons, NNI released of the new vision paper on the first year anniversary of the National Strategic Computing Initiative (NSCI) – perhaps as encouragement to the NSCI community. Specifically, the vision paper supports Nanotechnology-Inspired Grand Challenge, announced last fall by the Obama Administration, to develop “transformational computing capabilities by combining innovations in multiple scientific disciplines.”

As described in the latest paper, “The Grand Challenge addresses three Administration priorities—the National Nanotechnology Initiative (NNI); the National Strategic Computing Initiative (NSCI); and the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to: create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.

Somewhat soberly, the report says, “While it continues to be a national priority to advance conventional digital computing—which has been the engine of the information technology revolution—current technology falls far short of the human brain in terms of the brain’s sensing and problem-solving abilities and its low power consumption. Many experts predict that fundamental physical limitations will prevent transistor technology from ever matching these characteristics.”

NNI has categorized research and development needed to achieve the Grand Challenge into seven focus areas:

  • Materials
  • Devices and Interconnects
  • Computing Architectures
  • Brain-Inspired Approaches
  • Fabrication/Manufacturing
  • Software, Modeling, and Simulation
  • Applications

Nanotechnology, of course, is already an area of vigorous R&D. As the list of focus areas illustrates, the program covers a wide swath of technologies. Though brief, much of the directional discussion is fascinating. Here’s an excerpt from the materials section:

“The scaling limits of electron-based devices such as transistors are known to be on the order of 5 nm due to quantum-mechanical tunneling. Smaller devices can be made if information-bearing particles with mass greater than the mass of an electron are used. Therefore, new principles for logic and memory devices, scalable to ~1 nm, could be based on “moving atoms” instead of “moving electrons;” for example, by using nanoionic structures. Examples of solid-state nanoionic devices include memory (ReRAM) and logic (atomic/ionic switches).”

Despite the diversity of topics covered, the goal of emulating human brain-like capabilities runs throughout document. Indeed brain-inspired computing R&D is hot right now and making substantial progress.

IBM TrueNorth Platform
IBM TrueNorth Platform

In late spring of this year, IBM and Lawrence Livermore National Laboratory announced a collaboration in which LLNL would receive a 16-chip TrueNorth system representing a total of 16 million neurons and 4 billion synapses. At almost the same time in Europe, two large-scale neuromorphic computers, SpiNNaker and BrainScaleS, were put into service and made available to the wider research community.

LLNL will also receive an end-to-end ecosystem to create and program energy-efficient machines that mimic the brain’s abilities for perception, action and cognition. The ecosystem consists of a simulator; a programming language; an integrated programming environment; a library of algorithms as well as applications; firmware; tools for composing neural networks for deep learning; a teaching curriculum; and cloud enablement.

“Lawrence Livermore computer scientists will collaborate with IBM Research, partners across the Department of Energy complex and universities (link is external) to expand the frontiers of neurosynaptic architecture, system design, algorithms and software ecosystem,” according to a project description on the LLNL web site.

The SpinNNaker project, run by Steve Furber, one of the inventors of the ARM architecture and a researcher at the University of Manchester, has roughly 500K arm processors. The reason for selecting ARM, said Meier, is that ARM cores are cheap, at least if you make them very simple (integer operation). The challenge is to overcome scaling required. “Steve implemented a router on each of his chips, which is able to very efficiently communicate, action potentials called spikes, between individual arm processors,” said Karlheinz Meier, a leader in the HBP project whose group developed the BrainScaleS machine.

Screen Shot 2016-07-19 at 11.32.54 AMThe BrainScaleS effort, led by Meier, “makes physical models of cell neurons and synapses. Of course we are not using a biological substrate. We use CMOS. Technically it’s a mixed CMOs signal approach. In reality is it pretty much how the real brain operates. The big thing is you can automatically scale this by adding synapses. When it is running you can change the parameters,” Meier said.

It will be interesting to track neuromorphic computing’s advance and observe how effective various government programs are (or are not) moving forward.

Besides including discussion of technical challenges and promising approaches for each of the seven focus areas, the white paper lays out 5-, 10-, and 15-goals for each focus. Here’s a partial excerpt from the brain-inspired computing section:

“High-performance computing (HPC) has traditionally been associated with floating point computations and primarily originated from needs in scientific computing, business, and national security. On the other hand, brain-inspired approaches, while at least as old as modern computing, have traditionally aimed at what might be called pattern recognition applications (e.g., recognition/understanding of speech, images, text, human languages, etc., for which the alternative term, knowledge extraction, is preferred in some circles) and have exploited a different set of tools and techniques.

“Recently, convergence of these two computing paths has been mandated by the National Strategic Computing Initiative Strategic Plan, which places due emphasis on brain-inspired computing and pattern recognition or knowledge extraction type applications for enabling inference, prediction, and decision support for big data applications. DOE and NSF have demonstrated significant scientific advancements by investing and supporting HPC resources for open scientific applications. However, it is becoming apparent that brain-like computing capabilities may be necessary to enable scientific advancement, economic growth, and national security applications.

  • 5-year goal: Translate knowledge from biology, neuroscience, materials science, physics, and engineering into useable information for computing system designers.
  • 10-year goal: Identify and reverse engineer biological or neuro-inspired computing architectures, and translate results into models and systems that can be prototyped.
  • 15-year goal: Enable large-scale design, development, and simulation tools and environments able to run at exascale computing performance levels or beyond. The results should enable development, testing, and verification of applications, and be able to output designs that can be prototyped in hardware.”

The new document is a fairly quick read and has a fair amount of technical detail. Here’s a link to the white paper: http://www.nano.gov/node/1635

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This