Nanotech Grand Challenge & Federal Vision for Future Computing

By John Russell

August 8, 2016

What will computing look like in the post Moore’s Law era? That’s probably a bad way to pose the question and certainly there’s no shortage of ideas. A new federal white paper – A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge – tackles the ‘what’s next’ question and spells out seven specific research and development priorities and identifies the federal entities responsible.

The document, roughly a year in the making, is from the National Nanotechnology Initiative (NNI). The NNI, you may know, has it roots in discussions arising in the late 90s and formal creation by the 21st Century Nanotechnology Research and Development Act in 2003. NNI encompasses a large number of activities has a $1.4B budget request for FY2017.

Intended from the start to be a long-term program with long-term R&D horizons, NNI released of the new vision paper on the first year anniversary of the National Strategic Computing Initiative (NSCI) – perhaps as encouragement to the NSCI community. Specifically, the vision paper supports Nanotechnology-Inspired Grand Challenge, announced last fall by the Obama Administration, to develop “transformational computing capabilities by combining innovations in multiple scientific disciplines.”

As described in the latest paper, “The Grand Challenge addresses three Administration priorities—the National Nanotechnology Initiative (NNI); the National Strategic Computing Initiative (NSCI); and the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to: create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.

Somewhat soberly, the report says, “While it continues to be a national priority to advance conventional digital computing—which has been the engine of the information technology revolution—current technology falls far short of the human brain in terms of the brain’s sensing and problem-solving abilities and its low power consumption. Many experts predict that fundamental physical limitations will prevent transistor technology from ever matching these characteristics.”

NNI has categorized research and development needed to achieve the Grand Challenge into seven focus areas:

  • Materials
  • Devices and Interconnects
  • Computing Architectures
  • Brain-Inspired Approaches
  • Fabrication/Manufacturing
  • Software, Modeling, and Simulation
  • Applications

Nanotechnology, of course, is already an area of vigorous R&D. As the list of focus areas illustrates, the program covers a wide swath of technologies. Though brief, much of the directional discussion is fascinating. Here’s an excerpt from the materials section:

“The scaling limits of electron-based devices such as transistors are known to be on the order of 5 nm due to quantum-mechanical tunneling. Smaller devices can be made if information-bearing particles with mass greater than the mass of an electron are used. Therefore, new principles for logic and memory devices, scalable to ~1 nm, could be based on “moving atoms” instead of “moving electrons;” for example, by using nanoionic structures. Examples of solid-state nanoionic devices include memory (ReRAM) and logic (atomic/ionic switches).”

Despite the diversity of topics covered, the goal of emulating human brain-like capabilities runs throughout document. Indeed brain-inspired computing R&D is hot right now and making substantial progress.

IBM TrueNorth Platform
IBM TrueNorth Platform

In late spring of this year, IBM and Lawrence Livermore National Laboratory announced a collaboration in which LLNL would receive a 16-chip TrueNorth system representing a total of 16 million neurons and 4 billion synapses. At almost the same time in Europe, two large-scale neuromorphic computers, SpiNNaker and BrainScaleS, were put into service and made available to the wider research community.

LLNL will also receive an end-to-end ecosystem to create and program energy-efficient machines that mimic the brain’s abilities for perception, action and cognition. The ecosystem consists of a simulator; a programming language; an integrated programming environment; a library of algorithms as well as applications; firmware; tools for composing neural networks for deep learning; a teaching curriculum; and cloud enablement.

“Lawrence Livermore computer scientists will collaborate with IBM Research, partners across the Department of Energy complex and universities (link is external) to expand the frontiers of neurosynaptic architecture, system design, algorithms and software ecosystem,” according to a project description on the LLNL web site.

The SpinNNaker project, run by Steve Furber, one of the inventors of the ARM architecture and a researcher at the University of Manchester, has roughly 500K arm processors. The reason for selecting ARM, said Meier, is that ARM cores are cheap, at least if you make them very simple (integer operation). The challenge is to overcome scaling required. “Steve implemented a router on each of his chips, which is able to very efficiently communicate, action potentials called spikes, between individual arm processors,” said Karlheinz Meier, a leader in the HBP project whose group developed the BrainScaleS machine.

Screen Shot 2016-07-19 at 11.32.54 AMThe BrainScaleS effort, led by Meier, “makes physical models of cell neurons and synapses. Of course we are not using a biological substrate. We use CMOS. Technically it’s a mixed CMOs signal approach. In reality is it pretty much how the real brain operates. The big thing is you can automatically scale this by adding synapses. When it is running you can change the parameters,” Meier said.

It will be interesting to track neuromorphic computing’s advance and observe how effective various government programs are (or are not) moving forward.

Besides including discussion of technical challenges and promising approaches for each of the seven focus areas, the white paper lays out 5-, 10-, and 15-goals for each focus. Here’s a partial excerpt from the brain-inspired computing section:

“High-performance computing (HPC) has traditionally been associated with floating point computations and primarily originated from needs in scientific computing, business, and national security. On the other hand, brain-inspired approaches, while at least as old as modern computing, have traditionally aimed at what might be called pattern recognition applications (e.g., recognition/understanding of speech, images, text, human languages, etc., for which the alternative term, knowledge extraction, is preferred in some circles) and have exploited a different set of tools and techniques.

“Recently, convergence of these two computing paths has been mandated by the National Strategic Computing Initiative Strategic Plan, which places due emphasis on brain-inspired computing and pattern recognition or knowledge extraction type applications for enabling inference, prediction, and decision support for big data applications. DOE and NSF have demonstrated significant scientific advancements by investing and supporting HPC resources for open scientific applications. However, it is becoming apparent that brain-like computing capabilities may be necessary to enable scientific advancement, economic growth, and national security applications.

  • 5-year goal: Translate knowledge from biology, neuroscience, materials science, physics, and engineering into useable information for computing system designers.
  • 10-year goal: Identify and reverse engineer biological or neuro-inspired computing architectures, and translate results into models and systems that can be prototyped.
  • 15-year goal: Enable large-scale design, development, and simulation tools and environments able to run at exascale computing performance levels or beyond. The results should enable development, testing, and verification of applications, and be able to output designs that can be prototyped in hardware.”

The new document is a fairly quick read and has a fair amount of technical detail. Here’s a link to the white paper: http://www.nano.gov/node/1635

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Expanding Effort to Win in Microchips

July 27, 2017

The global battle for preeminence, or at least national independence, in semiconductor technology and manufacturing continues to heat up with Europe, China, Japan, and the U.S. all vying for sway. A fascinating article ( Read more…

By John Russell

Hyperion: Storage to Lead HPC Growth in 2016-2021

July 27, 2017

Global HPC external storage revenues will grow 7.8% over the 2016-2021 timeframe according to an updated forecast released by Hyperion Research this week. HPC server sales, by comparison, will grow a modest 5.8% to $14.8 Read more…

By John Russell

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Regular order is the established process whereby an Administrat Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Reg Read more…

By Alex R. Larzelere

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This