Nanotech Grand Challenge & Federal Vision for Future Computing

By John Russell

August 8, 2016

What will computing look like in the post Moore’s Law era? That’s probably a bad way to pose the question and certainly there’s no shortage of ideas. A new federal white paper – A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge – tackles the ‘what’s next’ question and spells out seven specific research and development priorities and identifies the federal entities responsible.

The document, roughly a year in the making, is from the National Nanotechnology Initiative (NNI). The NNI, you may know, has it roots in discussions arising in the late 90s and formal creation by the 21st Century Nanotechnology Research and Development Act in 2003. NNI encompasses a large number of activities has a $1.4B budget request for FY2017.

Intended from the start to be a long-term program with long-term R&D horizons, NNI released of the new vision paper on the first year anniversary of the National Strategic Computing Initiative (NSCI) – perhaps as encouragement to the NSCI community. Specifically, the vision paper supports Nanotechnology-Inspired Grand Challenge, announced last fall by the Obama Administration, to develop “transformational computing capabilities by combining innovations in multiple scientific disciplines.”

As described in the latest paper, “The Grand Challenge addresses three Administration priorities—the National Nanotechnology Initiative (NNI); the National Strategic Computing Initiative (NSCI); and the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to: create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.

Somewhat soberly, the report says, “While it continues to be a national priority to advance conventional digital computing—which has been the engine of the information technology revolution—current technology falls far short of the human brain in terms of the brain’s sensing and problem-solving abilities and its low power consumption. Many experts predict that fundamental physical limitations will prevent transistor technology from ever matching these characteristics.”

NNI has categorized research and development needed to achieve the Grand Challenge into seven focus areas:

  • Materials
  • Devices and Interconnects
  • Computing Architectures
  • Brain-Inspired Approaches
  • Fabrication/Manufacturing
  • Software, Modeling, and Simulation
  • Applications

Nanotechnology, of course, is already an area of vigorous R&D. As the list of focus areas illustrates, the program covers a wide swath of technologies. Though brief, much of the directional discussion is fascinating. Here’s an excerpt from the materials section:

“The scaling limits of electron-based devices such as transistors are known to be on the order of 5 nm due to quantum-mechanical tunneling. Smaller devices can be made if information-bearing particles with mass greater than the mass of an electron are used. Therefore, new principles for logic and memory devices, scalable to ~1 nm, could be based on “moving atoms” instead of “moving electrons;” for example, by using nanoionic structures. Examples of solid-state nanoionic devices include memory (ReRAM) and logic (atomic/ionic switches).”

Despite the diversity of topics covered, the goal of emulating human brain-like capabilities runs throughout document. Indeed brain-inspired computing R&D is hot right now and making substantial progress.

IBM TrueNorth Platform
IBM TrueNorth Platform

In late spring of this year, IBM and Lawrence Livermore National Laboratory announced a collaboration in which LLNL would receive a 16-chip TrueNorth system representing a total of 16 million neurons and 4 billion synapses. At almost the same time in Europe, two large-scale neuromorphic computers, SpiNNaker and BrainScaleS, were put into service and made available to the wider research community.

LLNL will also receive an end-to-end ecosystem to create and program energy-efficient machines that mimic the brain’s abilities for perception, action and cognition. The ecosystem consists of a simulator; a programming language; an integrated programming environment; a library of algorithms as well as applications; firmware; tools for composing neural networks for deep learning; a teaching curriculum; and cloud enablement.

“Lawrence Livermore computer scientists will collaborate with IBM Research, partners across the Department of Energy complex and universities (link is external) to expand the frontiers of neurosynaptic architecture, system design, algorithms and software ecosystem,” according to a project description on the LLNL web site.

The SpinNNaker project, run by Steve Furber, one of the inventors of the ARM architecture and a researcher at the University of Manchester, has roughly 500K arm processors. The reason for selecting ARM, said Meier, is that ARM cores are cheap, at least if you make them very simple (integer operation). The challenge is to overcome scaling required. “Steve implemented a router on each of his chips, which is able to very efficiently communicate, action potentials called spikes, between individual arm processors,” said Karlheinz Meier, a leader in the HBP project whose group developed the BrainScaleS machine.

Screen Shot 2016-07-19 at 11.32.54 AMThe BrainScaleS effort, led by Meier, “makes physical models of cell neurons and synapses. Of course we are not using a biological substrate. We use CMOS. Technically it’s a mixed CMOs signal approach. In reality is it pretty much how the real brain operates. The big thing is you can automatically scale this by adding synapses. When it is running you can change the parameters,” Meier said.

It will be interesting to track neuromorphic computing’s advance and observe how effective various government programs are (or are not) moving forward.

Besides including discussion of technical challenges and promising approaches for each of the seven focus areas, the white paper lays out 5-, 10-, and 15-goals for each focus. Here’s a partial excerpt from the brain-inspired computing section:

“High-performance computing (HPC) has traditionally been associated with floating point computations and primarily originated from needs in scientific computing, business, and national security. On the other hand, brain-inspired approaches, while at least as old as modern computing, have traditionally aimed at what might be called pattern recognition applications (e.g., recognition/understanding of speech, images, text, human languages, etc., for which the alternative term, knowledge extraction, is preferred in some circles) and have exploited a different set of tools and techniques.

“Recently, convergence of these two computing paths has been mandated by the National Strategic Computing Initiative Strategic Plan, which places due emphasis on brain-inspired computing and pattern recognition or knowledge extraction type applications for enabling inference, prediction, and decision support for big data applications. DOE and NSF have demonstrated significant scientific advancements by investing and supporting HPC resources for open scientific applications. However, it is becoming apparent that brain-like computing capabilities may be necessary to enable scientific advancement, economic growth, and national security applications.

  • 5-year goal: Translate knowledge from biology, neuroscience, materials science, physics, and engineering into useable information for computing system designers.
  • 10-year goal: Identify and reverse engineer biological or neuro-inspired computing architectures, and translate results into models and systems that can be prototyped.
  • 15-year goal: Enable large-scale design, development, and simulation tools and environments able to run at exascale computing performance levels or beyond. The results should enable development, testing, and verification of applications, and be able to output designs that can be prototyped in hardware.”

The new document is a fairly quick read and has a fair amount of technical detail. Here’s a link to the white paper: http://www.nano.gov/node/1635

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire