Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

By Tiffany Trader

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel’s Silicon Photonics product line and teased a brand-new Phi product, codenamed “Knights Mill,” aimed at machine learning workloads.

With the introduction of Silicon Photonics, Intel is debuting two new 100G optical transceivers. Sixteen years in the making, the small form-factor design fuses optical components with silicon integrated circuits to provide 100 gigabits per second over a distance of two kilometers. Initial target applications include connectivity for cloud and enterprise datacenters as well as Ethernet switch, router, and client-side telecom interfaces. Microsoft is adopting the technology for its scale-loving Azure datacenters.

“Electrons running over network cables won’t cut it,” said Bryant in her keynote address, “Intel is the only one to build the laser on silicon and therefore we are the first to light up silicon. We integrate the laser light emitting material, which is indium phosphide onto the silicon, and we use silicon lithography to align the laser with precision. This gives us a cost advantage because it is automatically aligned versus manually aligned as with traditional silicon photonics.”

The two QSFP28 optical transceivers, now shipping in volume, are based on industry standards at 100G for switch, router, and server use, notes Intel. The 100G PSM4 (Parallel Single Mode fiber 4-lane) optical transceiver features up to 2 kilometer reach on parallel single-mode fiber and the 100G CWDM4 (Coarse Wavelength Division Multiplexing 4-lane) optical transceiver offers up to 2 kilometer reach on duplex single-mode fiber.

The first Intel Silicon Photonics products will fulfill the need for faster connections from rack to rack and across the datacenter, said Bryant. “As the server network bandwidth increases from 10 Gig to 25 Gig to 50 Gig, optics will be required down into the server as well. We see a future where silicon photonics, optical I/O is everywhere in the datacenter and then integrated into the switch and the controller silicon. Our ability to run optics on silicon gives the end user a compelling benefit.”

Kushagra Vaid, general manager for Micrsoft Azure Cloud hardware engineering, emphasized the need to keep up with continued growth in its datacenter, especially relating to cloud networking. “Back in 2009 the server bandwidth used to be around a GB/sec, and if you fast forward to later this year into early next year, we anticipate it to be around 50 GB/sec, so that’s a growth of 50 times on bandwidth to the server. As the server data rates increase, from 1 to 10 to 25 Gbps, when we start getting to 100 Gbps to the server, you will hit a brick wall. There is no way copper can scale beyond 100 Gbps. It is already getting difficult to scale copper at 25 Gbps over 3 meters, so we do need some new technologies that are going to be used for this scaling. That’s why Silicon Photonics is very interesting to us.”

Microsoft will initially be deploying Intel’s Silicon Photonics technology for switch-to-switch interconnectivity at 100 Gbps in its Azure datacenter. “We found it’s a great cost-effective way to do these deployments,” said Vaid. “It’s optimized versus what we are doing today and I think the best part is it gives us a mechanism to scale to even higher bandwidth — up to 400 Gbps in the near future.”

Intel Puts AI-focused ‘Knights Mill’ on Phi Roadmap

Bryant also revealed that the next-generation Xeon Phi product would not be the 10nm “Knights Hill” that we’d been expecting but rather a brand-new Phi entry, codenamed “Knights Mill” and optimized for deep learning. The surprise Phi product will feature AI-targeted design elements such as enhanced variable precision compute and high capacity memory.

Like its second-gen cousin “Knights Landing,” the third-generation Phi is also a bootable host CPU. “It maintains that onload model,” said Bryant, “but we’ve included new instructions into the Intel instruction set – enhancements for variable precision floating point so the result is you will get even higher efficiency for deep learning models and training of those models complex neural data sets.”

IDF16 Phi Knights Mill slide 850x

Intel’s move to optimize for single-precision (and likely half-precision) follows the same path that NVIDIA started when it launched the highly FP32-optimized Titan X at its 2015 GTC event. Pascal, debuted at GTC16, is the company’s first high-end GPU to feature mixed-precision floating point capability, meaning the architecture will be able to process FP16 operations twice as quickly as FP32 operations. While double-precision FLOPS are standard fare in HPC, machine learning typically does quite well with single or half-precision compute.

There is still a lot we don’t know about Knights Mill, such as what manufacturing process it will use and whether it replaces Knights Hill, the chip that is supposed to power Argonne Lab’s CORAL installation in the 2018 timeframe. Bryant didn’t indicate if or how the new chip would affect previous disclosures, but emphasized Intel’s commitment to “a very long roadmap of optimized solutions for artificial intelligence.”

The War for AI Dominance

With the launch of both Nvidia Pascal GPUs and the Intel Knights Landing Phi this year, there’s a battle brewing between the reigning GPU champ and Chipzilla for AI supremacy with the most recent shot being fired by NVIDIA this week in the form of a blog post contesting performance claims made by Intel. Intel said it stands by its numbers.

During Bryant’s keynote, representatives from Chinese cloud giant Baidu and machine learning startup Indico took to the stage to sing the praises of Xeon and Xeon Phi for machine learning workloads. In one exchange Indico founder Slater Victoroff noted that “the issue with that is once you move to thousands of models, GPUs don’t make sense anymore.” “I certainly like the idea of GPUs not making sense,” Bryant quipped back.

Baidu provided an even heftier endorsement. The company, which has relied heavily on NVIDIA GPUs to run its deep learning models, announced that it will be using Xeon Phi chips to train and run Deep Speech, its speech recognition service.

“We are always trying to find ways to train neural networks faster,” said Baidu’s Jing Wang. “A big part of our approach is our use of techniques normally reserved for high-performance computing and that has helped us achieve a 7X speedup over our previous system. When it comes to AI, Intel Xeon Phi processors are a great fit in terms of running our machine learning networks. The increased memory size that Intel Phi provides makes it easier for us to train our models efficiently compared to other solutions. We find Xeon Phi very promising and consider performance across a wide range of kernel shapes and sizes relevant to the state-of-art along short-term memory models.”

Baidu also announced a new HPC cloud service, featuring Xeon Phis. “The Xeon Phi-based public cloud solutions will help bring HPC to a much broader audience,” said Wang. “We think it will mean not only lower cost but greater velocity of HPC and AI innovations.”

Bryant observed that machine learning is also a prime workload at government and academic high-performance computing centers. Increasingly, researchers are applying machine learning to what are traditional data-intensive science problems. At NERSC, the DOE computing facility where the Knights Landing-based Cori machine is currently being installed, Intel is partnering with researchers to advance machine learning at scale. Together, she said, they’ll tackle “previously unsolved problems that require the entire Cori supercomputer for challenges such as creating a catalogue of all objects in the universe.”

The final AI note hit by Bryant was Intel’s planned acquisition of Nervana Systems, announced last week. “Their IP as well as their deep expertise in accelerating deep learning algorithms will directly apply to our advancements in artificial intelligence,” said Bryant. “They have solutions at the silicon levels, at the libraries and at the framework level.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

HPC Career Notes: December 2021 Edition

December 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

AWS Solution Channel

Running a 3.2M vCPU HPC Workload on AWS with YellowDog

Historically, advances in fields such as meteorology, healthcare, and engineering, were achieved through large investments in on-premises computing infrastructure. Upfront capital investment and operational complexity have been the accepted norm of large-scale HPC research. Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire