Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

By Tiffany Trader

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel’s Silicon Photonics product line and teased a brand-new Phi product, codenamed “Knights Mill,” aimed at machine learning workloads.

With the introduction of Silicon Photonics, Intel is debuting two new 100G optical transceivers. Sixteen years in the making, the small form-factor design fuses optical components with silicon integrated circuits to provide 100 gigabits per second over a distance of two kilometers. Initial target applications include connectivity for cloud and enterprise datacenters as well as Ethernet switch, router, and client-side telecom interfaces. Microsoft is adopting the technology for its scale-loving Azure datacenters.

“Electrons running over network cables won’t cut it,” said Bryant in her keynote address, “Intel is the only one to build the laser on silicon and therefore we are the first to light up silicon. We integrate the laser light emitting material, which is indium phosphide onto the silicon, and we use silicon lithography to align the laser with precision. This gives us a cost advantage because it is automatically aligned versus manually aligned as with traditional silicon photonics.”

The two QSFP28 optical transceivers, now shipping in volume, are based on industry standards at 100G for switch, router, and server use, notes Intel. The 100G PSM4 (Parallel Single Mode fiber 4-lane) optical transceiver features up to 2 kilometer reach on parallel single-mode fiber and the 100G CWDM4 (Coarse Wavelength Division Multiplexing 4-lane) optical transceiver offers up to 2 kilometer reach on duplex single-mode fiber.

The first Intel Silicon Photonics products will fulfill the need for faster connections from rack to rack and across the datacenter, said Bryant. “As the server network bandwidth increases from 10 Gig to 25 Gig to 50 Gig, optics will be required down into the server as well. We see a future where silicon photonics, optical I/O is everywhere in the datacenter and then integrated into the switch and the controller silicon. Our ability to run optics on silicon gives the end user a compelling benefit.”

Kushagra Vaid, general manager for Micrsoft Azure Cloud hardware engineering, emphasized the need to keep up with continued growth in its datacenter, especially relating to cloud networking. “Back in 2009 the server bandwidth used to be around a GB/sec, and if you fast forward to later this year into early next year, we anticipate it to be around 50 GB/sec, so that’s a growth of 50 times on bandwidth to the server. As the server data rates increase, from 1 to 10 to 25 Gbps, when we start getting to 100 Gbps to the server, you will hit a brick wall. There is no way copper can scale beyond 100 Gbps. It is already getting difficult to scale copper at 25 Gbps over 3 meters, so we do need some new technologies that are going to be used for this scaling. That’s why Silicon Photonics is very interesting to us.”

Microsoft will initially be deploying Intel’s Silicon Photonics technology for switch-to-switch interconnectivity at 100 Gbps in its Azure datacenter. “We found it’s a great cost-effective way to do these deployments,” said Vaid. “It’s optimized versus what we are doing today and I think the best part is it gives us a mechanism to scale to even higher bandwidth — up to 400 Gbps in the near future.”

Intel Puts AI-focused ‘Knights Mill’ on Phi Roadmap

Bryant also revealed that the next-generation Xeon Phi product would not be the 10nm “Knights Hill” that we’d been expecting but rather a brand-new Phi entry, codenamed “Knights Mill” and optimized for deep learning. The surprise Phi product will feature AI-targeted design elements such as enhanced variable precision compute and high capacity memory.

Like its second-gen cousin “Knights Landing,” the third-generation Phi is also a bootable host CPU. “It maintains that onload model,” said Bryant, “but we’ve included new instructions into the Intel instruction set – enhancements for variable precision floating point so the result is you will get even higher efficiency for deep learning models and training of those models complex neural data sets.”

IDF16 Phi Knights Mill slide 850x

Intel’s move to optimize for single-precision (and likely half-precision) follows the same path that NVIDIA started when it launched the highly FP32-optimized Titan X at its 2015 GTC event. Pascal, debuted at GTC16, is the company’s first high-end GPU to feature mixed-precision floating point capability, meaning the architecture will be able to process FP16 operations twice as quickly as FP32 operations. While double-precision FLOPS are standard fare in HPC, machine learning typically does quite well with single or half-precision compute.

There is still a lot we don’t know about Knights Mill, such as what manufacturing process it will use and whether it replaces Knights Hill, the chip that is supposed to power Argonne Lab’s CORAL installation in the 2018 timeframe. Bryant didn’t indicate if or how the new chip would affect previous disclosures, but emphasized Intel’s commitment to “a very long roadmap of optimized solutions for artificial intelligence.”

The War for AI Dominance

With the launch of both Nvidia Pascal GPUs and the Intel Knights Landing Phi this year, there’s a battle brewing between the reigning GPU champ and Chipzilla for AI supremacy with the most recent shot being fired by NVIDIA this week in the form of a blog post contesting performance claims made by Intel. Intel said it stands by its numbers.

During Bryant’s keynote, representatives from Chinese cloud giant Baidu and machine learning startup Indico took to the stage to sing the praises of Xeon and Xeon Phi for machine learning workloads. In one exchange Indico founder Slater Victoroff noted that “the issue with that is once you move to thousands of models, GPUs don’t make sense anymore.” “I certainly like the idea of GPUs not making sense,” Bryant quipped back.

Baidu provided an even heftier endorsement. The company, which has relied heavily on NVIDIA GPUs to run its deep learning models, announced that it will be using Xeon Phi chips to train and run Deep Speech, its speech recognition service.

“We are always trying to find ways to train neural networks faster,” said Baidu’s Jing Wang. “A big part of our approach is our use of techniques normally reserved for high-performance computing and that has helped us achieve a 7X speedup over our previous system. When it comes to AI, Intel Xeon Phi processors are a great fit in terms of running our machine learning networks. The increased memory size that Intel Phi provides makes it easier for us to train our models efficiently compared to other solutions. We find Xeon Phi very promising and consider performance across a wide range of kernel shapes and sizes relevant to the state-of-art along short-term memory models.”

Baidu also announced a new HPC cloud service, featuring Xeon Phis. “The Xeon Phi-based public cloud solutions will help bring HPC to a much broader audience,” said Wang. “We think it will mean not only lower cost but greater velocity of HPC and AI innovations.”

Bryant observed that machine learning is also a prime workload at government and academic high-performance computing centers. Increasingly, researchers are applying machine learning to what are traditional data-intensive science problems. At NERSC, the DOE computing facility where the Knights Landing-based Cori machine is currently being installed, Intel is partnering with researchers to advance machine learning at scale. Together, she said, they’ll tackle “previously unsolved problems that require the entire Cori supercomputer for challenges such as creating a catalogue of all objects in the universe.”

The final AI note hit by Bryant was Intel’s planned acquisition of Nervana Systems, announced last week. “Their IP as well as their deep expertise in accelerating deep learning algorithms will directly apply to our advancements in artificial intelligence,” said Bryant. “They have solutions at the silicon levels, at the libraries and at the framework level.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This