ARM Unveils Scalable Vector Extension for HPC at Hot Chips

By John Russell

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets.

Fujitsu first announced plans to adopt ARM for the post K machine – a switch from SPARC processor technology used in the K computer – at ISC2016 and said at the time that it would reveal more at Hot Chips about the ARM development effort needed. Bull Atos is also developing an ARM-based supercomputer.

The SVE is focused on addressing “next generation high performance computing challenges and by that we mean workloads typically found in scientific computing environment where they are very parallelizable,” said Ian Smythe, director of marketing programs, ARM Compute Products Group, in a pre-briefing. SVE is scalable from 128-bits to 2048-bits in 128-bit increments and, among other things, should enhance ARM’s ability to exploit fine grain parallelism.

ARM SVE BenefitsNigel Stephens, lead ISA architect and ARM Fellow, provided more technical detail in his blog (Technology Update: The Scalable Vector Extension (SVE) for the ARMv8-A Architecture, link below) coinciding with his Hot Chips presentation. It’s worth reading for a fast but substantial summary.

“Rather than specifying a specific vector length, SVE allows CPU designers to choose the most appropriate vector length for their application and market, from 128 bits up to 2048 bits per vector register,” wrote Stephens. “SVE also supports a vector-length agnostic (VLA) programming model that can adapt to the available vector length. Adoption of the VLA paradigm allows you to compile or hand-code your program for SVE once, and then run it at different implementation performance points, while avoiding the need to recompile or rewrite it when longer vectors appear in the future. This reduces deployment costs over the lifetime of the architecture; a program just works and executes wider and faster.

“Scientific workloads, mentioned earlier, have traditionally been carefully written to exploit as much data-level parallelism as possible with careful use of OpenMP pragmas and other source code annotations. It’s therefore relatively straightforward for a compiler to vectorize such code and make good use of a wider vector unit. Supercomputers are also built with the wide, high- bandwidth memory systems necessary to feed a longer vector unit,” wrote Stephens.

He notes that scientific workloads have traditionally been written to exploit as much data-level parallelism as possible with careful use of OpenMP pragmas and other source code annotations. “It’s relatively straightforward for a compiler to vectorize such code and make good use of a wider vector unit. Supercomputers are also built with the wide, high- bandwidth memory systems necessary to feed a longer vector unit.”

ARM server workloadsWhile HPC is a natural fit for SVE’s longer vectors, said Stephens, it also offers an opportunity to improve vectorizing compilers that will be of general benefit over the longer term as other systems scale to support increased data level parallelism.

Amplifying on the point, he wrote, “It is worth noting at this point that Amdahl’s Law tells us that the theoretical limit of a task’s speedup is governed by the amount of unparallelizable code. If you succeed in vectorizing 10 percent of your execution and make that code run four times faster (e.g. a 256-bit vector allows 4x64b parallel operations), then you reduce 1000 cycles down to 925 cycles and provide a limited speedup for the power and area cost of the extra gates. Even if you could vectorize 50 percent of your execution infinitely (unlikely!) you’ve still only doubled the overall performance. You need to be able to vectorize much more of your program to realize the potential gains from longer vectors.”

The ARMv7 Advanced SIMD (aka the ARM NEON) is now about 12 years old and was originally intended to accelerate media processing tasks on the main processor. With the move to AArch64, NEON gained full IEEE double-precision float, 64-bit integer operations, and grew the register file to thirty-two 128-bit vector registers. These changes, says Stephens, made NEON a better compiler target for general-purpose compute. SVE is a complementary extension that does not replace NEON, and was developed specifically for vectorization of HPC scientific workloads, he says.

Snapshot of new SVE features compared to NEON:

  • Scalable vector length (VL)
  • VL agnostic (VLA) programming
  • Gather-load & Scatter-store
  • Per-lane predication
  • Predicate-driven loop control and management
  • Vector partitioning and SW managed speculation
  • Extended integer and floating- point horizontal reductions
  • Scalarized intra-vector sub-loops

Smythe emphasized, “If you compile the code for SVE it will run on any implementation of SVE regardless of the width, whether 128 or 1024 or 2048, and the hardware implementation, that code will run on ARM architecture as a binary. That’s important and gives us scalability and compatibility into the future for the compilers and the code that HPC guys are writing.”

ARM ecosystemARM has been steadily working to expand its ecosystem (shown here) with hopes of capturing a chunk of the broader x86 market. It has notable wins in many market segments, although the market traction has been tougher to gauge, and it is only in the past couple of years that server chips started to become available. Many design wins have been niche oriented; one example is an HPE ARM-based storage server (StoreVirtual 3200) announced earlier this month. ARM, of course, is a juggernaut in mobile computing.

Prior to the Hot Chips conference, with its distinctly technical focus, ARM was pre-briefing some of the HPC community about SVE and using the opportunity to reinforce its mission of growth, its success in ecosystem building, and to bask in some of the glory of the post K computer win. Given the recent acquisition of ARM by SoftBank, it will be interesting to watch how the marketing and technical activities change, if at all.

Lakshmi Mandyam, senior marketing director, ARM Server Programs, said, “We’ve been focusing on enabling some base market segments to establish some beachheads and enable our partners to get adoption in those key areas. Also we have also been using key end users to drive our approach in terms of ecosystem enablement because clearly we are catching up with x86 in terms of software enablement.”

“The move to open source and consuming applications and workloads through [as-a-service models] is really driving a lot of disruption of the industry. It also presents an opportunity because a lot of those platforms are based on open source and Linux and or intermediate middleware and so the dependency on the legacy (x86) software and architectures is gone. That presents an opportunity to ARM.”

It’s also important, she said, to recognize that many modern workloads, even in HPC, are moving towards the scale out model as opposed to a purely scale up. Many of those applications are driven by IO and memory performance. “This where the ARM partnership can shine because we are able to deliver heterogeneous computing quite easily and we’re able to deliver optimized algorithm processing quite easily. If you look at a lot of these applications, it’s not about spec and benchmark performance; it’s about what can you deliver in my application.”

“When you think about Fujitsu, as they talked about the post K computer, a lot of the folks are looking for this really tuned performance, to take a codesign approach where they are looking at the entire problem, and to deliver an application and service for a given problem. This is where their ability to tune platforms down to the silicon level pays big dividends,” she said.

Here’s a link to Nigel Stephens’ blog on the ARM SVE anouncment: Technology Update: The Scalable Vector Extension (SVE) for the ARMv8-A Architecture

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia’s Jensen Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Bailey Hutchison Convention Center and much of the surrounding Read more…

By Tiffany Trader

Nvidia’s Jensen Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

SC 30th Anniversary Perennials 1988-2018

November 8, 2018

Many conferences try, fewer succeed. Thirty years ago, no one knew if the first SC would also be the last. Thirty years later, we know it’s the biggest annual Read more…

By Doug Black & Tiffany Trader

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This