ARM Unveils Scalable Vector Extension for HPC at Hot Chips

By John Russell

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets.

Fujitsu first announced plans to adopt ARM for the post K machine – a switch from SPARC processor technology used in the K computer – at ISC2016 and said at the time that it would reveal more at Hot Chips about the ARM development effort needed. Bull Atos is also developing an ARM-based supercomputer.

The SVE is focused on addressing “next generation high performance computing challenges and by that we mean workloads typically found in scientific computing environment where they are very parallelizable,” said Ian Smythe, director of marketing programs, ARM Compute Products Group, in a pre-briefing. SVE is scalable from 128-bits to 2048-bits in 128-bit increments and, among other things, should enhance ARM’s ability to exploit fine grain parallelism.

ARM SVE BenefitsNigel Stephens, lead ISA architect and ARM Fellow, provided more technical detail in his blog (Technology Update: The Scalable Vector Extension (SVE) for the ARMv8-A Architecture, link below) coinciding with his Hot Chips presentation. It’s worth reading for a fast but substantial summary.

“Rather than specifying a specific vector length, SVE allows CPU designers to choose the most appropriate vector length for their application and market, from 128 bits up to 2048 bits per vector register,” wrote Stephens. “SVE also supports a vector-length agnostic (VLA) programming model that can adapt to the available vector length. Adoption of the VLA paradigm allows you to compile or hand-code your program for SVE once, and then run it at different implementation performance points, while avoiding the need to recompile or rewrite it when longer vectors appear in the future. This reduces deployment costs over the lifetime of the architecture; a program just works and executes wider and faster.

“Scientific workloads, mentioned earlier, have traditionally been carefully written to exploit as much data-level parallelism as possible with careful use of OpenMP pragmas and other source code annotations. It’s therefore relatively straightforward for a compiler to vectorize such code and make good use of a wider vector unit. Supercomputers are also built with the wide, high- bandwidth memory systems necessary to feed a longer vector unit,” wrote Stephens.

He notes that scientific workloads have traditionally been written to exploit as much data-level parallelism as possible with careful use of OpenMP pragmas and other source code annotations. “It’s relatively straightforward for a compiler to vectorize such code and make good use of a wider vector unit. Supercomputers are also built with the wide, high- bandwidth memory systems necessary to feed a longer vector unit.”

ARM server workloadsWhile HPC is a natural fit for SVE’s longer vectors, said Stephens, it also offers an opportunity to improve vectorizing compilers that will be of general benefit over the longer term as other systems scale to support increased data level parallelism.

Amplifying on the point, he wrote, “It is worth noting at this point that Amdahl’s Law tells us that the theoretical limit of a task’s speedup is governed by the amount of unparallelizable code. If you succeed in vectorizing 10 percent of your execution and make that code run four times faster (e.g. a 256-bit vector allows 4x64b parallel operations), then you reduce 1000 cycles down to 925 cycles and provide a limited speedup for the power and area cost of the extra gates. Even if you could vectorize 50 percent of your execution infinitely (unlikely!) you’ve still only doubled the overall performance. You need to be able to vectorize much more of your program to realize the potential gains from longer vectors.”

The ARMv7 Advanced SIMD (aka the ARM NEON) is now about 12 years old and was originally intended to accelerate media processing tasks on the main processor. With the move to AArch64, NEON gained full IEEE double-precision float, 64-bit integer operations, and grew the register file to thirty-two 128-bit vector registers. These changes, says Stephens, made NEON a better compiler target for general-purpose compute. SVE is a complementary extension that does not replace NEON, and was developed specifically for vectorization of HPC scientific workloads, he says.

Snapshot of new SVE features compared to NEON:

  • Scalable vector length (VL)
  • VL agnostic (VLA) programming
  • Gather-load & Scatter-store
  • Per-lane predication
  • Predicate-driven loop control and management
  • Vector partitioning and SW managed speculation
  • Extended integer and floating- point horizontal reductions
  • Scalarized intra-vector sub-loops

Smythe emphasized, “If you compile the code for SVE it will run on any implementation of SVE regardless of the width, whether 128 or 1024 or 2048, and the hardware implementation, that code will run on ARM architecture as a binary. That’s important and gives us scalability and compatibility into the future for the compilers and the code that HPC guys are writing.”

ARM ecosystemARM has been steadily working to expand its ecosystem (shown here) with hopes of capturing a chunk of the broader x86 market. It has notable wins in many market segments, although the market traction has been tougher to gauge, and it is only in the past couple of years that server chips started to become available. Many design wins have been niche oriented; one example is an HPE ARM-based storage server (StoreVirtual 3200) announced earlier this month. ARM, of course, is a juggernaut in mobile computing.

Prior to the Hot Chips conference, with its distinctly technical focus, ARM was pre-briefing some of the HPC community about SVE and using the opportunity to reinforce its mission of growth, its success in ecosystem building, and to bask in some of the glory of the post K computer win. Given the recent acquisition of ARM by SoftBank, it will be interesting to watch how the marketing and technical activities change, if at all.

Lakshmi Mandyam, senior marketing director, ARM Server Programs, said, “We’ve been focusing on enabling some base market segments to establish some beachheads and enable our partners to get adoption in those key areas. Also we have also been using key end users to drive our approach in terms of ecosystem enablement because clearly we are catching up with x86 in terms of software enablement.”

“The move to open source and consuming applications and workloads through [as-a-service models] is really driving a lot of disruption of the industry. It also presents an opportunity because a lot of those platforms are based on open source and Linux and or intermediate middleware and so the dependency on the legacy (x86) software and architectures is gone. That presents an opportunity to ARM.”

It’s also important, she said, to recognize that many modern workloads, even in HPC, are moving towards the scale out model as opposed to a purely scale up. Many of those applications are driven by IO and memory performance. “This where the ARM partnership can shine because we are able to deliver heterogeneous computing quite easily and we’re able to deliver optimized algorithm processing quite easily. If you look at a lot of these applications, it’s not about spec and benchmark performance; it’s about what can you deliver in my application.”

“When you think about Fujitsu, as they talked about the post K computer, a lot of the folks are looking for this really tuned performance, to take a codesign approach where they are looking at the entire problem, and to deliver an application and service for a given problem. This is where their ability to tune platforms down to the silicon level pays big dividends,” she said.

Here’s a link to Nigel Stephens’ blog on the ARM SVE anouncment: Technology Update: The Scalable Vector Extension (SVE) for the ARMv8-A Architecture

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This