IBM Advances Against x86 with Power9

By Tiffany Trader

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Built on GlobalFoundries 14nm finFET process technology, Power9 will be the centerpiece in Power-based servers starting in the second half of 2017. The highlight of the release is a brand new core and chip architecture that IBM has optimized for technical/HPC workloads, hyperscale, analytics and machine learning applications.

Although system availability hasn’t been announced yet, IBM has already landed a major win for its forthcoming Power9 platform. Back in November 2014, IBM, Mellanox and Nvidia were tapped to provide the DOE with two ~200-petaflops machines: Summit and Sierra. The $325 million contract specifies that the machines will employ Power9 CPUs and Volta GPUs when they come online next year.

IBM also has buy-in from Google, no small proof point in an era when hyperscalers exert substantial influence on the market. At the 2016 OpenPower Summit, Google said that the majority of its infrastructure had been ported to Power and that for most Googlers, enabling Power is a matter of a config change. Google is also working with Rackspace on a Power9 server, called Zaius, a design that will then be submitted to the Open Compute Project.

Without referencing specific customers or OpenPower partners, IBM indicated that chip-level derivatives based on Power9 could potentially be out in the 2018-2019 timeframe. A non-IBM Power8 chip was announced last year for the Chinese market. The CP1 was made by Suzhou PowerCore and was incorporated into Zoom Netcom’s RedPower C210 server.

Out of the gate, the Power9 family includes four different chip variations, targeting single and two-socket scale-out servers in commodity form factors and performance-optimized multi-socket scale-up servers. (IBM servers will start above $6,000, but other server manufacturers are free to offer lower-cost systems.) The scale out model will use direct attached memory with up to eight DDR4 ports, providing up to 120 GB/s of sustained bandwidth. The scale up designs use eight buffered channels, offering up to 230 GB/s of sustained bandwidth, and a greater number of SMP links to facilitate a larger SMP computer. The IBM Centaur memory buffer chips implemented in the scale-up models have L4 caches on board, providing low latency out of the L4 cache.

“It’s a tradeoff for the two different kinds of systems,” said Bill Starke, IBM distinguished engineer, Power Systems Memory Hierarchy and SMP Architecture at IBM. “With the scale-up you really get that extreme capacity up to practically 8 TB per socket and the strongest memory bandwidth – and back on the scale-out getting nice low latency, strong bandwidth across eight channels of DDR4 and of course getting the nice packaging solution of having the direct-attached memory.”

For both the scale-up and scale-out models, there are 24-core and 12-core variants.

“We either have 24 SMT4 cores or 12 SMT8 cores,” said Brian Thompto, senior technical staff member for POWER Processor Design at IBM, “our reasoning here was we wanted to hit all of the different customer optimization points – we wanted the 24 cores for good core-level virtualization granularity for the scale-out ecosystem datacenter space, the cloud space, and we wanted the 12 really strong SMT8 cores to provide larger partitions that fit very well with our customer needs for AIX and IPMI workloads running a type of RVM.”

In keeping with its mission to enable accelerated and heterogeneous compute solutions, Power9 also includes some new signaling capabilities and protocols that bring the CPU and various accelerators closer together with access to memory.

“The acceleration capabilities that we are introducing they are not only enabling very strong CPU-GPU interaction and coupling; in addition to that they’re enabling a broad range of accelerators for highly-differentiated heterogeneous compute solutions,” said Thompto.

IBM Power9 acceleration slide Hot-Chips

The above slide from IBM depicts how the Power9 CPU enables connectivity to a range of accelerators – Nvidia GPUs, ASICs, FPGAs, and PCIe-connected devices — using an array of interfaces. In addition to supporting PCIe Gen4, the CPU will employ NVLink 2.0, CAPI 2.0, and the successor to CAPI 2.0, currently being called New CAPI, ahead of an official naming.

“With CAPI 2.0 [over PCIe Gen4 x48 lanes], we not only run it over pins that run twice as fast but also run it over twice as many signals so you get an overall 4x bandwidth increase for that attach,” said Starke.

He added that IBM wasn’t content to stop at PCIe industry-standard protocols, hence the decision to implement a 48-lane 25 Gb/s accelerator-attach bus to further boost bandwidth and lower latency. The 25 Gb/s interconnect will power NVLink 2.0 as well as New CAPI, and will provide 300 Gb/s duplex bandwidth, said to be a 7x-10x improvement over PCIe Gen3 x16.

IBM Power9 accelerator bandwidth Hot Chips 1200x

With its latest microarchitecture, IBM is reporting improved efficiency of its processor pipeline. Said Thompto, “The new design shortens fetch to compute by five cycles and if you look at completion — when we’re able to retire instructions — our fixed point total pipe from fetch to complete reduced by a similar number of cycles, five, and floating point actually reduced by eight cycles so we keep the instructions resident in the pipe less long, we’re able to better utilize our pipe and we get a lot of efficiency out of this as well.”

The Power9 family of chips are the first to implement the Power ISA 3.0, released by the OpenPower foundation. Notably the silicon has support for 128-bit IEEE 754 Quad-Precision Float, which will give IBM the distinction of having the first quadruple-precision hardware implementation. Each SMT4 processor has a full 128-bit quad-precision floating point precision engine, while each SMT8 processor has two of these engines since they are supporting twice as many threads. The wider precision will be a boon for certain financial and security workloads.

The Power9 chips also support half-precision float conversion, optimized for accelerator bandwidth and data exchange. IBM doesn’t see the need to implement half-precision floating point computation, a la Nvidia’s Pascal architecture and (likely) the forthcoming Intel Knights Mill Phi, because in their approach, workloads that can benefit from the higher FLOPS enabled by FP16 will be getting them from the GPU or another accelerator.

Takeaway: While rival Intel is championing a big silicon approach for its x86 chips, IBM, along with CORAL partners Nvidia and Mellanox, believes the best way forward is to move work off the processor using accelerators and other intelligence offloading implementations.

“As we’re moving into the post-Moore’s law era, you can’t just turn the crank and make the general-purpose processor faster,” said Starke. “It’s our believe that you’re going to see more and more specialized silicon. That can be in the form of on-chip acceleration, but as you can see from our approach, we tend to believe it’s more flexible and deployable with off-chip acceleration. Obviously it requires extreme bandwidth, low-latency, and tight integration with your main processor complex, but that’s where we see the future of computing going and you see us putting very strong investments in these directions.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Nvidia, Intel not Welcomed in New Apple AI and HPC Development Tools

July 12, 2024

New Mac developer tools will leverage Apple's homegrown chips, limiting HPC users' ability to use parallel programming frameworks from Intel or Nvidia. Apple's latest programming framework, Xcode 16, was introduced at Read more…

Virga: Australia’s New HPC and AI Powerhouse

July 11, 2024

Australia has officially added another supercomputer to the TOP500 list with the implementation of Virga. Officially coming online in June 2024, Virga is the newest HPC system to come out of the Australian Commonwealth S Read more…

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and implementation phases of the Quantum Quantum Science and Technolo Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the software, and selecting the best user interface. The National Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three of the 10 highest-ranking Top500 systems, but some other ne Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Leading Solution Providers

Contributors

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire